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Abstract
Point cloud completion aims to recover raw point1

clouds captured by scanners from partial obser-2

vations caused by occlusion and limited view an-3

gles. Many approaches utilize a partial-complete4

paradigm in which missing parts are directly pre-5

dicted by a global feature learned from partial in-6

puts. This makes it hard to recover details because7

the global feature is unlikely to capture the full de-8

tails of all missing parts. In this paper, we pro-9

pose a novel approach to point cloud completion10

called Point-PC, which uses a memory network to11

retrieve shape priors and designs an effective causal12

inference model to choose missing shape informa-13

tion as supplemental geometric information to aid14

point cloud completion. Specifically, we propose a15

memory operating mechanism where the complete16

shape features and the corresponding shapes are17

stored in the form of “key-value” pairs. To retrieve18

similar shapes from the partial input, we also apply19

a contrastive learning-based pre-training scheme to20

transfer features of incomplete shapes into the do-21

main of complete shape features. Moreover, we use22

backdoor adjustment to get rid of the confounder,23

which is a part of the shape prior that has the same24

semantic structure as the partial input. Experimen-25

tal results on the ShapeNet-55, PCN, and KITTI26

datasets demonstrate that Point-PC performs favor-27

ably against the state-of-the-art methods.28

1 Introduction29

With more people using 3D scanners and RGB-D cameras,30

3D vision has become one of the most popular topics for re-31

search in recent years [Han et al., 2019; Han et al., 2017;32

Han et al., 2018a; Han et al., 2018b]. Among all the 3D de-33

scriptors [Wang et al., 2018; Xie et al., 2020a; Qi et al., 2017;34

Park et al., 2019], the point cloud stands out because of its re-35

markable ability to render spatial structure at a lower compu-36

tational cost. However, due to occlusion, view angles, and37

limitations of sensor resolution, raw point clouds are usu-38

ally sparse and defective [Wen et al., 2021; Wen et al., 2020;39

Wen et al., 2022]. Consequently, point cloud completion be-40

comes essential.41

Figure 1: Point-PC is proposed for point cloud completion. Point-
PC proposes a novel paradigm that finds similar shape information
as prior knowledge to help the model handle the point cloud com-
pletion problem. Furthermore, our approach also selects geometric
information from shape priors (blue, red, and yellow points) guided
by causal inference.

Benefiting from large-scale point cloud datasets [Chang et 42

al., 2015; Yuan et al., 2018; Geiger et al., 2013], massively 43

efficient learning-based methods for point cloud completion 44

have emerged. The pioneering work is PCN [Yuan et al., 45

2018] which encoded the input shape into a global feature and 46

decoded it using a folding operation. Following an encoder- 47

decoder pattern, several methods such as NSFA [Zhang et al., 48

2020b] and GRNet [Xie et al., 2020b] have emerged. Later 49

work focuses on the decoding part of making point clouds 50

with more geometric structures. SA-Net [Wen et al., 2020] 51

and PFNet [Huang et al., 2020] increased the density of point 52

clouds hierarchically. Such a coarse-to-fine pattern achieves 53

better performance since more constraints are imposed on the 54

generation process. 55

Most recent methods incorporate geometry-aware mod- 56

ules into a transformer-based structure. PoinTr [Yu et al., 57

2021] used a KNN model to facilitate transformers, which 58

can better leverage the inductive bias about 3D geometric 59

structures. CompleteDT [Li et al., 2022] integrated useful lo- 60

cal information into the generation operations by enhancing 61

the correlation of neighboring points in the proposed dense 62

augment inference transformers. These two methods formu- 63

late the point cloud completion task as a set-to-set transla- 64

tion task, where complex dependency is learned among the 65

point groups. Many approaches used the same framework to 66

handle the point cloud completion problem [Li et al., 2022; 67

Zhang et al., 2022; Cao et al., 2022]. However, there are 68



two drawbacks to the paradigm: 1) An incomplete shape is69

hard to learn detailed structure information and build a clear70

relationship between the complete point cloud model; 2) A71

global feature like this is spread out and does not keep much72

fine-grained information for the up-sample phase. Because73

of this, geometry-aware models can not learn complex struc-74

tures if they know less about geometry.75

To deal with this problem, we propose a new memory-76

based framework for completing point clouds (Point-PC).77

This framework uses a memory network to get shape pri-78

ors and an effective causal inference model to choose miss-79

ing shape information as additional geometric information to80

help complete point clouds. First, we construct an operating81

strategy to store, write, and read the memory. Specifically,82

we store the memory in a “key-value” pair. The key can be83

updated according to the similarity between the value and the84

corresponding ground truth. In order to achieve the best prior85

knowledge information, we construct a causal graph to re-86

move the unrelated shape information of prior shapes. The87

obtained causal graph model removes the partial shape in-88

formation and it only saves the missing structural informa-89

tion to help the final decoder obtain a more complete point90

cloud. Experimental results on the ShapeNet-55, PCN, and91

KITTI datasets demonstrate that Point-PC performs favorably92

against the state-of-the-art methods.93

The main contributions of our work are as follows:94

• We propose a novel memory-based 3D point cloud com-95

pletion network, Point-PC, to supplement geometric in-96

formation explicitly from prior knowledge.97

• We introduce causal inference to further refine the shape98

prior, so as to eliminate the distraction of irrelevant in-99

formation.100

• We apply qualitative and quantitative experiments on101

ShapeNet-55, PCN, and KITTI datasets, which shows102

that Point-PC improves the accuracy and plausibility of103

point cloud completion.104

2 Related Work105

2.1 Point Cloud Completion106

Most recent state-of-the-art completion methods focus on the107

decoding process of recovering fine details instead of pro-108

viding sufficient geometric guidance from partial inputs in109

the encoding process [Xiang et al., 2021; Xie et al., 2020b;110

Tchapmi et al., 2019]. The first learning-based work PCN111

[Yuan et al., 2018] generates a coarse completion based on a112

learned global feature and is then upsampled combined with113

the assumption that a 3D object lies on a 2D-manifold. Later114

researches focus on mitigating mature learning-based struc-115

tures. Some previous methods [Liu et al., 2019b; Liu et al.,116

2019a] voxelized the point cloud into binary voxels to mi-117

grate 3D convolutions, which cubically increased the com-118

putational cost, whereas other methods [Huang et al., 2020;119

Mandikal and Babu, 2019] process coordinates directly by120

Multi-Layer Perceptrons, yet losing geometric information121

with pooling-based aggregation operations. These two kinds122

of completion methods ignore relation and context across123

points, thus failing to preserve regional information of lo- 124

cal patterns. To solve this problem, TopNet [Tchapmi et 125

al., 2019] constrains the point completion process as the 126

growth of a hierarchical rooted tree where several child points 127

are projected by a parent point in a feature expansion layer. 128

On the other hand, SnowflakeNet [Xiang et al., 2021] mod- 129

els point cloud completion procedure as the generation of a 130

snowflake. Furthermore, by breaking the point cloud into 131

several sequential patches, transformer-based methods [Guo 132

et al., 2021; Yu et al., 2021; Zhou et al., 2022] are proved 133

to efficiently handle large-scale point cloud and enhance re- 134

lations between neighboring points, which outperform and 135

dominate the research prospect. Nevertheless, upsample and 136

expansion modules among the aforementioned methods are 137

based on a global feature vector due to its simplicity, which 138

prevents them from precisely capturing the detailed geome- 139

tries and structures of 3D shapes, therefore it is unable for 140

these methods to arrange the well-structured point splitting 141

in local regions. In order to integrate more geometric infor- 142

mation explicitly, we utilize a memory network to provide 143

rich structural details and enhance neighboring relations to 144

recover local regions. 145

2.2 Memory Network 146

The Memory Network [Weston et al., 2015] was initially 147

presented in dialog systems to save scene information and 148

realize the functionality of long-term memory. However, 149

the original design of the Memory Network just vector- 150

izes and saves the original text without proper modification, 151

thus limiting the promotion of the model. Further works 152

[Sukhbaatar et al., 2015; Liu and Perez, 2017] reinforce the 153

Memory Network so that it can be trained in an end-to-end 154

way. Hierarchical Memory Network [Chandar et al., 2016; 155

Xu et al., 2016] stores and searches memory in a hierarchical 156

structure to speed up calculations when implementing large- 157

scale memory. Key-Value Memory Network [Miller et al., 158

2016] stores memory slots in a “key-value” pair where the 159

key module is responsible for scoring the degree of correla- 160

tion between memory and queries, while the value module 161

is responsible for weighting and summing the values of the 162

memory to obtain the output. In our work, we further extend 163

the application of “key-value” structured memory into point 164

cloud completion and reveal its ability for preserving high- 165

quality geometry details through a well-designed pre-training 166

method. 167

2.3 Causal Inference 168

Causal Inference was first introduced by [Pearl, 2000]. Re- 169

cent research [Hu et al., 2021; Niu et al., 2020] has shown that 170

causal inference is beneficial to various fields in computer 171

vision. VC R-CNN [Wang et al., 2020] proposes that ob- 172

servational bias causes the model to make predictions based 173

on co-occurrence information while ignoring some common- 174

sense causal relationships, and attempts to extract a visual 175

feature that contains common sense through causal interven- 176

tion. CONTA [Zhang et al., 2020a] attributes the cause of 177

the ambiguous boundaries of pseudo-masks to the confound- 178

ing context, and uses backdoor adjustment to eliminate the 179

confounder and generate better pixel-level pseudo masks by 180
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Figure 2: The overall architecture of Point-PC, which consists of four main modules: (i) pre-trained partial shape encoder, (ii) memory
network, (iii) prior knowledge selection module, and (iv) shape decoder. The pre-trained encoder extracts feature from the partial input,
which is then fed into memory. The memory network retrieves shape priors with sufficient geometric information. Moreover, the prior
knowledge selection module selects useful information from the prior shapes. The shape decoder takes the concatenation of the partial shape
feature and the shape prior feature to generate the complete point cloud.

using only image-level labels. Ifsl [Yue et al., 2020] argues181

that the pre-trained knowledge is essentially a confounder that182

causes spurious correlations between the sample features and183

class labels in the support set and removes the confounding184

bias using the backdoor adjustment. To our best knowledge,185

we are the first to introduce causal inference to point cloud186

completion. We introduce a causal feature fusion strategy to187

mitigate the confounding effect in shape priors. It encourages188

the decoder to pay more attention to causal features, which189

will also enhance the robustness of the memory network.190

3 Our Approach191

The overall architecture of Point-PC is shown in Figure 2,192

which consists of four modules: pre-train encoder, memory193

network, prior knowledge selection module, and shape de-194

coder. We will detail each of our designs in the following.195

3.1 Memory Network196

The memory network aims to learn the dependency of par-197

tial and complete shapes in feature space and produce the198

prior shapes. Denote the input set of partial point clouds199

as S = {Ii}|S|
i=1, where Ii ∈ RN×3 represents each point200

in the object, N is the point number of a shape. We con-201

struct the memory network in a “key-value-age” formation.202

The “key” and “value” represent complete shape features203

and the corresponding 3D shapes, respectively. The “age”204

indicates how long the corresponding “key-value” pair has205

been established. Therefore, the memory item is denoted as206

M = (Ki, Vi, Ai)
|M|
i=1 , where |M| is the size of the memory.207

Compared with other methods, the memory network uti-208

lizes the “key” and “value” to improve the effectiveness of209

prior shapes. Meanwhile, the “key” and “value” can also be210

updated by the training data and improve the relevance of ob-211

taining prior information. Next, we will introduce the model 212

update and retrieval process in two parts. 213

Update Strategy 214

Ki is extracted through the pre-trained complete shape en- 215

coder from Vi, which can be denoted as FVi . It is worth not- 216

ing that the updating strategy only works at training because 217

we take the training set as our external knowledge base, which 218

can not be available during testing. 219

We compute the cosine similarity between F I and FVi to 220

match a “key-value” pair as follows: 221

Simkey

(
F I , FVi

)
=

F I · FVi

∥F I∥ ∥FVi∥
. (1)

To measure whether it is a valid match, we adopt Chamfer 222

Distance [Yuan et al., 2018] as the similarity measurement 223

between the corresponding ground truth V and the value Vi 224

in 3D space. If the Chamfer Distance Simvalue exceeds a 225

threshold δ(discussed in the ablation study), it is a positive 226

match and vice versa. For a positive match, the value Vn0
227

stays unchanged, while the key FVn0 is updated as below: 228

FVn0 =
F I + FVn0∥∥F I + FVn1

∥∥ , (2)

where n0 = argmaxi Simkey

(
F I , FVi

)
. In the meantime, 229

except for the corresponding age An0
to be set to zero, all the 230

other ages should be increased by one. For a negative match, 231

V is read into the memory and should overwrite the oldest 232

slot as follows: 233

Kn1 = F I , Vn1 = V, (3)
where n1 depends on n1 = argmaxi (Ai). The ages here are 234

updated in the same way as mentioned above. In this way, the 235

memory network reinforces its reception ability with similar 236

shapes, saves the unknown shapes, and refreshes the oldest 237

memory slot. 238



Algorithm 1 Update and Query Strategy
Input: partial point cloud feature F I

Hyper-parameter: similarity threshold δ
Output: shape priors Vni

1: Let i = 0.
2: while i ≤ |M| − 1 do
3: Compute Simkey

(
F I , FVi

)
by Eq. 1.

4: if (Simvalue (V, Vn1) ≥ δ) then
5: Let n0 = argmaxi Simkey

(
F I , FVi

)
,

6: Update Kn0 by Eq. 2,
7: Set An0 = 0, Ai = Ai + 1 (i ̸= n0).
8: else
9: Let n1 = argmaxi (Ai).

10: Update Kn1
and Vn1

by Eq. 3,
11: Set An1

= 0, Ai = Ai + 1 (i ̸= n1).
12: end if
13: end while
14: return Vni

by Eq. 4.

Query Strategy239

We propose a query strategy for obtaining shape priors that240

are rich in geometric information for completion and very241

similar to the partial input. These shape priors are the val-242

ues in the memory, which are complete point clouds. To243

fix the number of shape priors fed forward, we retrieve k̂244

shapes through top-k̂ keys with the largest similarity for con-245

venience, which can be formulated as:246

V =
[
Vni |ni = argmax

i
Simkey

(
F I , FVi

)]
. (4)

The simplified update and query process is described in Al-247

gorithm 1.248

3.2 Pre-training Scheme249

The pre-training scheme aims to minimize the distance be-250

tween partial point clouds and complete point clouds, as well251

as enhance the consistency of partial shape features. Given252

the complete shape denoted as Si ∈ RN×3, where N is253

the number of points, we render the corresponding partial254

ones Ii,n1
and Ii,n2

in different viewpoints and crop differ-255

ent numbers of n1 and n2 points. We provide a visualization256

of the overall pre-training scheme in the supplementary ma-257

terial.258

Intra-modality Learning259

Suppose that Ii,n1 and Ii,n2 are fed into the partial shape en-260

coder EK to extract features FK
i,n1

, FK
i,n2
∈ R1×C , where C261

is the feature dimension. Following the NT-Xent loss in Sim-262

CLR [Chen et al., 2020], given a positive pair (FK
i,n1

, FK
i,n2

),263

we treat the other 2(N − 1) examples within a minibatch as264

negative examples, where N is the size of the minibatch. The265

intra-modality contrastive loss Lintra can be formulated as:266

lintra (i;n1, n2) = − log
Simpos(i;n1, n2)

Simneg(i;n1, n2)
, (5)

267

Lintra =
1

2N

N∑
i=1

(lintra (i;n1, n2) + lintra (i;n2, n1)) , (6)

where Simpos(i;n1, n2) and Simneg(i;n1, n2) represent the 268

positive and negative cosine similarity between the same par- 269

tial inputs but with a different incomplete pattern. The cosine 270

similarity function is defined as follows: 271

Simpos(i;n1, n2) = exp
(
sim

(
FK
i,n1

, FK
i,n2

)
/τ

)
,

Simneg(i;n1, n2) =

N∑
j=1

I[j ̸=i] exp
(
sim

(
FK
i,n1

, FK
j,n1

)
/τ

)
+

N∑
j=1

exp
(
sim

(
FK
i,n1

, FK
j,n2

)
/τ

)
,

(7)

where I[j ̸=i] ∈ {0, 1} is an indicator function evaluating to 1 272

if j ̸= i and τ is the temperature parameter which we set to 273

0.1. 274

Cross-modality Learning 275

Considering that the partial shape features should keep con- 276

sistent with the complete shape features, for each Si, we ex- 277

tract features FV
i ∈ R1×C by the complete shape encoder 278

EV . Together with the partial shape features FK
i , the cross- 279

modality contrastive loss Lcross is indicated as follows: 280

lintra (i;K,V ) = − log
Simpos(i;K,V )

Simneg(i;K,V )
, (8)

281

Lcross =
1

2N

N∑
i=1

(lcross(i;K,V ) + lcross(i;V,K)) (9)

where Simpos(i;K,V ) and Simneg(i;K,V ) represent the 282

positive and negative cosine similarity between the partial and 283

complete shape features. The overall pre-training loss func- 284

tion Lpre is the sum of the intra-modality and cross-modality 285

loss Lpre = Lintra + Lcross. 286

3.3 Prior Knowledge Selection Module 287

We exploit causal theory [Pearl, 2013] to dig out the true 288

causality of the extracted features and generated 3D shapes. 289

The causal graph is shown as Figure 3. 290

We list the following explanations for the causalities 291

among the four variables shown in Figure 3: 292

• M → I . Since the retrieved shapes share the same se- 293

mantic structures as the partial inputs, this causal effect 294

is naturally established. 295

• I → C ←M . The variable C denotes the causal feature 296

that is truly responsible for the completion result. We 297

not only keep the original part I but also add M as the 298

supplementary information. 299

• C → Y . The causality reflects the intrinsic association 300

of the feature space and 3D coordinate space. 301

Investigating the causal graph above, we recognize a back- 302

door path between M and I , i.e., M → I , wherein the M 303

plays a role of confounder between I and C. This backdoor 304

path will cause I to create a false correlation with Y even if 305

I is not the only one directly linked to Y , resulting in gen- 306

erating low-quality shapes. Hence, it is crucial to cut off the 307

backdoor path. 308



Figure 3: Causal graph for Backdoor Adjustment Module. Circles
represent variables, and arrows represent causal relationships from
one variable to another.

Backdoor Adjustment309

Instead of modeling the confounded P (Y |I) in Figure 3, we310

need to eliminate the backdoor path. According to causal the-311

ory, we exploit the do-calculus on the variable M to remove312

the backdoor path by estimating PB(Y |I) = P (Y |do(I))313

which stratifies the confounder M . We then obtain the fol-314

lowing derivations:315

• The features extracted from memory will not be af-316

fected by cutting off the backdoor path. Thus, P (m) =317

PB(m).318

• C has nothing to do with the causal effect between the319

variable M and I , which we can get PB(C|I,m) =320

P (C|I,m).321

• After the causal intervention, the variable m is indepen-322

dent from I , for which we have PB(m) = PB(m|I).323

B refers to the case when the backdoor path is cut off, and324

m ∈ M denotes the confounder sets. Driven by the deriva-325

tions above, the backdoor adjustment for Figure 3 can be writ-326

ten as:327

P (Y | do(I)) =
∑
m∈M

PB(Y |I,m)PB(m|I)

=
∑
m∈M

PB(Y |I,m)PB(m)

=
∑
m∈M

P (Y |I,m)P (m),

(10)

where P (Y |I,m) represents the conditional probability328

given the partial shape feature and confounder; P (m) is the329

prior probability of the confounder.330

Module Design331

Driven by Eq. 10, we design the prior knowledge selection332

module to alleviate the confounding effect in shape priors.333

Our implementation idea is stratifying the confounder and334

pairing the partial shape feature with every stratification. To-335

wards this end, we make the implicit intervention on feature-336

wise sampling. Suppose thatH is the index set of the dimen-337

sions of the concatenated shape prior feature from the last338

layer of the shape prior encoder. We divide H into n equal-339

size disjoint subsets, e.g., the output feature dimension of the340

shape prior encoder is 384, if we select top-3 shape priors and341

n = 6, the i-th set will be a feature dimension index set of size342

1152/6 = 192, i.e.,Hm = 192(m− 1) + 1, ..., 192m.343

• P (Y |I,m) = Pϕ(Y |cat(FI , [FV ]c)), where FI and FV 344

are the partial shape feature and the concatenated shape 345

prior feature, respectively. [FV ]c is a feature selector 346

which selects the dimensions of FV according to the in- 347

dex set c. Note that c = {k|k ∈ Hm ∩ St}, where St 348

is an index set whose corresponding absolute values in 349

FV are larger than the threshold t. And ϕ represents the 350

parameters of the shape decoder. 351

• P (m) = 1/n, where we assume a uniform prior dis- 352

tribution for the adjusted features. n is the number of 353

confounder set. 354

Thus, the overall feature-wise adjustment is: 355

P (Y | do(I)) = 1

n

∑
m∈M

Pϕ(Y |cat(FI , [FV ]c)). (11)

To optimize the ϕ in the above Eq. 11, we propose a slightly 356

modified L1 Chamfer Distance loss guided by the backdoor 357

adjustment. Let G be the notation of high-resolution ground 358

truth, and P be the notation of the completed prediction. The 359

Lcaus can be written as: 360

P = Φ(cat(FI , [FV ]c)), (12)
361

Lcaus =
1

n

∑
m∈M

(CD − ℓ1(P,G)) , (13)

where Φ represents the shape decoder, and cat(·, ·) denotes 362

the concatenate operation. The Eq. 13 pushes the predictions 363

of such intervened partial-complete probability to be invariant 364

and stable across different stratifications, due to the shared 365

causal features. 366

We follow the existing works [Yu et al., 2021] to use the 367

L1 Chamfer Distance [Fan et al., 2016] as a quantitative mea- 368

surement for the quality of output. Apart from generating P , 369

Point-PC also predicts local centers C of the completed point 370

cloud. For each prediction, the L1 Chamfer Distance loss 371

function between the central point set and the ground truth G 372

is calculated as: 373

Lrecon =
1

|C|
∑
c∈C

min
g∈G
∥c−g∥1+

1

|G|
∑
g∈G

min
c∈C
∥g−c∥1. (14)

The final objective function can be defined as the sum of the 374

losses: L = λLcaus + (1 − λ)Lrecon, where λ is a hype- 375

parameter used to control the contribution of different losses 376

in the optimization process. 377

4 Experiment 378

In this section, we first present the experimental results on 379

ShapeNet-55/34 [Yu et al., 2021], PCN [Yuan et al., 2018], 380

and KITTI [Geiger et al., 2013]. Then, we visualize and an- 381

alyze the results for both our method and several baseline 382

methods. Finally, we also provide detailed ablation studies 383

of our method. 384

4.1 Results on ShapeNet-55 385

Following the evaluation setting in [Yu et al., 2021], 8 fixed 386

viewpoints are selected, and the number of points in the par- 387

tial point cloud is set to 2,048, 4,096, and 6,144 (25%, 50%, 388



Methods Table Chair Airplane Car Sofa Birdhouse Bag Remote Keyboard Rocket CD-S CD-M CD-H CD-Avg F-Score@1%

FoldingNet 2.53 2.81 1.43 1.98 2.48 4.71 2.79 1.44 1.24 1.48 2.67 2.66(-0.01) 4.05(+1.38) 3.12 0.082
PCN 2.13 2.29 1.02 1.85 2.06 4.5 2.86 1.33 0.89 1.32 1.94 1.96(+0.02) 4.08(+2.14) 2.66 0.133
TopNet 2.21 2.53 1.14 2.18 2.36 4.83 2.93 1.49 0.95 1.32 2.26 2.16(-0.10) 4.30(+2.26) 2.91 0.126
PFNet 3.95 4.24 1.81 2.53 3.34 6.21 4.96 2.91 1.29 2.36 3.83 3.87(+0.04) 7.97(+4.10) 5.22 0.339
GRNet 1.63 1.88 1.02 1.64 1.72 2.97 2.06 1.09 0.89 1.03 1.35 1.71(+0.36) 2.85(+1.50) 1.97 0.238
PoinTr 0.81 0.95 0.44 0.91 0.79 1.86 0.93 0.53 0.38 0.57 0.58 0.88(+0.30) 1.79(+1.21) 1.09 0.464
Point-PC 1.16 1.26 0.58 1.05 1.19 2.14 1.58 0.68 0.53 0.79 1.16 1.23(+0.07) 2.04(+0.88) 1.48 0.426

Table 1: Quantitative results of our methods and several baselines on ShapeNet-55. Detailed results for each method on 10 selected categories
are reported, as well as the overall results on 55 categories. CD-S, CD-M, and CD-H represent the CD-ℓ2 results under the simple, moderate,
and hard settings, respectively. Red/green numbers represent increments of CD-ℓ2 results compared to results under the CD-S setting.

and 75% of the whole point cloud), which divides the test-389

ing stage into three difficulty degrees of simple, moderate,390

and hard (denoted as CD-S, CD-M, and CD-H). As shown391

in Table. 1, Point-PC achieves an average CD-ℓ2(multiplied392

by 1000) of 1.48 and F-Score@1% of 0.426 on ShapeNet-393

55, which shows the effectiveness of Point-PC encountering394

diverse categories of objects. It is worth noting that the in-395

crements of CD-ℓ2 under CD-M(+0.07) and CD-H(+0.88)396

strategy demonstrate that Point-PC better deals with diverse397

incompleteness levels and diverse incomplete patterns com-398

pared to the state-of-the-art methods. Furthermore, we report399

the results for categories with sufficient(first 5 columns) and400

insufficient(following 5 columns) training samples. Point-401

PC performs evenly despite the training sample imbalance.402

Quantitative results on ShapeNet-55 show that Point-PC can403

generate complete point clouds in a variety of situations.404

The qualitative comparison results are shown in Figure. 4.405

The proposed Point-PC performs better with fine details than406

the other methods. For example, in the bottle category, Point-407

PC predicts a more smooth and more regular structure of bot-408

tle edges compared with the other methods. Moreover, Point-409

PC retains the original details of the partial shapes. In the fifth410

column of Figure. 4, Point-PC not only generates the incom-411

plete lamp bracket with a clear structure but also keeps the412

texture of the lamp shade, which makes it a more plausible413

completion than the other methods. Consequently, Point-PC414

effectively learns the geometric information based on the ex-415

isting partial shape, retrieves similar shape priors based on the416

learned information and reconstructs complete shapes with417

more regular arrangements and surface smoothness.418

4.2 Results on ShapeNet-34419

We utilize ShapeNet-34 to evaluate the performance of Point-420

PC on novel objects from categories that do not appear in the421

training phase. As shown in Table.2, our method achieves the422

best scores of 0.444 F-Score@1% on 34 seen categories and423

0.406 F-Score@1% on 21 unseen categories. In particular,424

we observe fewer gaps between the results of 34 seen cate-425

gories and 21 unseen categories under each difficulty setting,426

which demonstrates the superiority of shape priors offered by427

the memory network. We also provide the visual comparison428

with GRNet on novel categories in Figure.5, which show the429

effectiveness of Point-PC in this more challenging setting.430

4.3 Results on PCN431

We compare several SOTA methods on the PCN dataset. The432

related experimental results are shown in Table.3. Our pro-433

posed method stands out and produces the best results in 3 out434

Figure 4: Qualitative results on ShapeNet-55 benchmark. All meth-
ods above take samples in the first row as inputs and generate com-
plete point clouds.

of 8 categories. In terms of average CD-ℓ1, Point-PC achieves 435

second-best score of 8.50, which illustrate that Point-PC per- 436

forms favorably against state-of-the-art completion networks. 437

4.4 Results on KITTI Benchmark 438

We report both the results of Fidelity and MMD metrics in 439

Table.4 on the KITTI dataset. The Fidelity measures the av- 440

erage distance between points in the input and their nearest 441

neighbors in the output, representing how well the input is 442

preserved. MMD is the Chamfer Distance between the com- 443

pletion result and the closest ground truth in ShapeNetCars, 444

indicating how much the reconstruction resembles a typical 445

car. Observed in Table.4, Point-PC shows better generaliza- 446



Methods 34 seen categories 21 unseen categories
CD-S CD-M CD-H CD-Avg F1 CD-S CD-M CD-H CD-Avg F-Score@1%

FoldingNet 1.86 1.81 3.38 2.35 0.139 2.76 2.74 5.36 3.62 0.095
PCN 1..87 1.81 2.97 2.22 0.154 3.17 3.08 5.29 3.85 0.101
TopNet 1.77 1.61 3.54 2.31 0.171 2.62 2.43 5.44 3.5 0.121
PFNet 3.16 3.19 7.71 4.68 0.347 5.29 5.87 13.33 8.16 0.322
GRNet 1.26 1.39 2.57 1.74 0.251 1.85 2.25 4.87 2.99 0.216
PoinTr 0.76 1.05 1.88 1.23 0.421 1.04 1.67 3.44 2.05 0.384

Point-PC 1.17 1.46 2.21 1.61 0.444 1.62 2.05 3.15 2.27 0.406

Table 2: Quantitative results on ShapeNet-34 evaluated as CD-
ℓ2(multiplied by 1000) and F-Score@1%.

Figure 5: Quantitative results on objects of novel categories that do
not appear in the training set. We show the input partial point cloud
and the ground truth as well as the prediction of GRNet and Point-
PC.

tion ability compared with previous methods, achieving a Fi-447

delity of 0.398 and MMD of 0.527. Qualitative results can be448

found in the supplementary material. Compared with other449

public datasets, the KITTI dataset is composed of a sequence450

of real-world scans. The points in the data are more sparse451

and lack regularity, which brings greater challenges to data452

completion. However, our approach achieves the best perfor-453

mance, which further proves the necessity of prior knowledge454

for guiding the point cloud completion.455

4.5 Model Design Analysis456

To examine the effectiveness of our designs, we conduct de-457

tailed ablation studies. The results of the novel modules of458

Point-PC are shown in Table.5. The baseline model A refers459

to a geometry-aware transformer encoder and a foldingnet-460

based decoder in an “encoder-decoder” pattern. This model461

generates poor results. We then add the memory network and462

improves the baseline by 4.84 in the CD-ℓ1 metric, which463

means that the memory network provides more geometric in-464

formation to improve the performance. However, due to the465

lack of consistent representational learning of complete and466

partial shapes, the relevance of prior information cannot be467

guaranteed. Thus, it did not get the best results. When apply-468

ing well-designed pre-training with intra- and cross-modality469

Methods Air Cab Car Cha Lam Sof Tab Wat CD-Avg

FoldingNet 9.49 15.8 12.61 15.55 16.41 15.97 13.65 14.99 14.31
AtlasNet 6.37 11.94 10.1 12.06 12.37 12.99 10.33 10.61 10.85
PCN 5.50 22.70 10.63 8.70 11.00 11.34 11.68 8.59 9.64
TopNet 7.61 13.31 10.9 13.82 14.44 14.78 11.22 11.12 12.15
MSN 5.60 11.90 10.30 10.20 10.70 11.60 9.60 9.90 10.00
GRNet 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04 8.83
PoinTr 4.75 10.47 8.68 9.39 7.75 10.93 7.78 7.29 8.38
Point-PC 4.89 10.20 8.56 9.24 8.65 9.70 8.62 8.14 8.50

Table 3: Quantitative results on the PCN dataset. We report de-
tailed results on each category and the average results under the CD-
ℓ1(multiplied by 1000) metric.

FoldingNet AtlasNet PCN TopNet MSN PFNet GRNet Point-PC

Fidelity 7.467 1.759 2.235 5.354 0.434 1.137 0.816 0.398
MMD 0.537 2.108 1.366 0.636 2.259 0.792 0.568 0.527

Table 4: Quantitative results on the KITTI dataset under the metrics
of Fidelity Distance and MMD(Minimal Matching Distance). Lower
is better.

learning (model C), we observe another improvement of 0.71 470

in the Chamfer distance, which is a sign of retrieving more 471

relevant shape priors. By adding the prior knowledge se- 472

lect module to Point-PC, the performance can be further im- 473

proved, achieving an average CD-ℓ2 of 8.5, which indicates 474

that the causal model effectively removes existing structural 475

information and save missing shape information to improve 476

the integrity of the fused representation. The ablation study 477

clearly demonstrates the effectiveness of key components in 478

Point-PC. The ablation studies on the number of shape priors 479

and the similarity threshold δ can be found in the supplemen- 480

tary material. 481

Model Memory Network Pre-train Scheme PKS Module CD-AVG F-Score@1%

A × × × 15.37 0.109
B √ × × 10.53 0.541
C √ √ × 9.82 0.623
D √ √ √ 8.50 0.709

Table 5: Ablation study on the PCN dataset. We investigate different
designs including the Memory Network, the pre-train scheme, and
the prior knowledge selection module(PKS Module).

5 Conclusion 482

In this paper, we propose a novel approach to point cloud 483

completion called Point-PC, which proposes a new memory- 484

based architecture to search prior shapes and designs an ef- 485

fective causal inference model to choose missing shape infor- 486

mation as supplemental geometric information to aid point 487

cloud completion. Specifically, the update mechanism of the 488

memory network can optimize the retrieval distance based 489

on the training data, thereby improving the accuracy of the 490

prior shape. To our best knowledge, this is the first work 491

to introduce a causal graph into the point cloud completion 492

task, which effectively filters shape information from previ- 493

ous shapes and preserves missing shape information to im- 494

prove the integrity and ultimate performance of the fused rep- 495

resentation. Comprehensive experiments show the effective- 496

ness and superiority of Point-PC compared to state-of-the-art 497

competitors. 498
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