Point-PC: Point Cloud Completion Guided by Prior Knowledge via Causal Inference

Anonymous

Abstract

 Point cloud completion aims to recover raw point clouds captured by scanners from partial obser- vations caused by occlusion and limited view an- gles. Many approaches utilize a partial-complete paradigm in which missing parts are directly pre- dicted by a global feature learned from partial in- puts. This makes it hard to recover details because the global feature is unlikely to capture the full de- tails of all missing parts. In this paper, we pro- pose a novel approach to point cloud completion called Point-PC, which uses a memory network to retrieve shape priors and designs an effective causal inference model to choose missing shape informa- tion as supplemental geometric information to aid point cloud completion. Specifically, we propose a memory operating mechanism where the complete shape features and the corresponding shapes are stored in the form of "key-value" pairs. To retrieve similar shapes from the partial input, we also apply a contrastive learning-based pre-training scheme to transfer features of incomplete shapes into the do- main of complete shape features. Moreover, we use backdoor adjustment to get rid of the confounder, which is a part of the shape prior that has the same semantic structure as the partial input. Experimen- tal results on the ShapeNet-55, PCN, and KITTI datasets demonstrate that Point-PC performs favor-

²⁸ ably against the state-of-the-art methods.

²⁹ 1 Introduction

 With more people using 3D scanners and RGB-D cameras, 3D vision has become one of the most popular topics for re- search in recent years [Han *et al.*[, 2019;](#page-7-0) Han *et al.*[, 2017;](#page-7-1) Han *et al.*[, 2018a;](#page-7-2) Han *et al.*[, 2018b\]](#page-7-3). Among all the 3D de- scriptors [Wang *et al.*[, 2018;](#page-8-0) Xie *et al.*[, 2020a;](#page-8-1) Qi *et al.*[, 2017;](#page-7-4) Park *et al.*[, 2019\]](#page-7-5), the point cloud stands out because of its re- markable ability to render spatial structure at a lower compu- tational cost. However, due to occlusion, view angles, and limitations of sensor resolution, raw point clouds are usu- ally sparse and defective [Wen *et al.*[, 2021;](#page-8-2) Wen *et al.*[, 2020;](#page-8-3) Wen *et al.*[, 2022\]](#page-8-4). Consequently, point cloud completion be-comes essential.

Figure 1: Point-PC is proposed for point cloud completion. Point-PC proposes a novel paradigm that finds similar shape information as prior knowledge to help the model handle the point cloud completion problem. Furthermore, our approach also selects geometric information from shape priors (blue, red, and yellow points) guided by causal inference.

Benefiting from large-scale point cloud datasets [\[Chang](#page-7-6) *et* ⁴² *[a](#page-7-6)l.*[, 2015;](#page-7-6) Yuan *et al.*[, 2018;](#page-8-5) Geiger *et al.*[, 2013\]](#page-7-7), massively ⁴³ efficient learning-based methods for point cloud completion ⁴⁴ [h](#page-8-5)ave emerged. The pioneering work is PCN [\[Yuan](#page-8-5) *et al.*, 45] [2018\]](#page-8-5) which encoded the input shape into a global feature and 46 decoded it using a folding operation. Following an encoder- ⁴⁷ [d](#page-8-6)ecoder pattern, several methods such as NSFA [\[Zhang](#page-8-6) *et al.*, ⁴⁸ [2020b\]](#page-8-6) and GRNet [Xie *et al.*[, 2020b\]](#page-8-7) have emerged. Later ⁴⁹ work focuses on the decoding part of making point clouds 50 with more geometric structures. SA-Net [Wen *et al.*[, 2020\]](#page-8-3) 51 and PFNet [\[Huang](#page-7-8) *et al.*, 2020] increased the density of point 52 clouds hierarchically. Such a coarse-to-fine pattern achieves 53 better performance since more constraints are imposed on the 54 generation process. 55

Most recent methods incorporate geometry-aware mod- ⁵⁶ [u](#page-8-8)les into a transformer-based structure. PoinTr [Yu *[et al.](#page-8-8)*, ⁵⁷ [2021\]](#page-8-8) used a KNN model to facilitate transformers, which ⁵⁸ can better leverage the inductive bias about 3D geometric ⁵⁹ structures. CompleteDT [Li et al.[, 2022\]](#page-7-9) integrated useful lo- 60 cal information into the generation operations by enhancing 61 the correlation of neighboring points in the proposed dense 62 augment inference transformers. These two methods formu- ⁶³ late the point cloud completion task as a set-to-set transla- ⁶⁴ tion task, where complex dependency is learned among the 65 point groups. Many approaches used the same framework to 66 handle the point cloud completion problem [Li *et al.*[, 2022;](#page-7-9) 67 Zhang *et al.*[, 2022;](#page-8-9) Cao *et al.*[, 2022\]](#page-7-10). However, there are ⁶⁸

 two drawbacks to the paradigm: 1) An incomplete shape is hard to learn detailed structure information and build a clear relationship between the complete point cloud model; 2) A global feature like this is spread out and does not keep much fine-grained information for the up-sample phase. Because of this, geometry-aware models can not learn complex struc-tures if they know less about geometry.

 To deal with this problem, we propose a new memory- based framework for completing point clouds (Point-PC). This framework uses a memory network to get shape pri- ors and an effective causal inference model to choose miss- ing shape information as additional geometric information to help complete point clouds. First, we construct an operating strategy to store, write, and read the memory. Specifically, we store the memory in a "key-value" pair. The key can be updated according to the similarity between the value and the corresponding ground truth. In order to achieve the best prior knowledge information, we construct a causal graph to re- move the unrelated shape information of prior shapes. The obtained causal graph model removes the partial shape in- formation and it only saves the missing structural informa- tion to help the final decoder obtain a more complete point cloud. Experimental results on the ShapeNet-55, PCN, and KITTI datasets demonstrate that Point-PC performs favorably against the state-of-the-art methods.

⁹⁴ The main contributions of our work are as follows:

⁹⁵ • We propose a novel memory-based 3D point cloud com-⁹⁶ pletion network, Point-PC, to supplement geometric in-⁹⁷ formation explicitly from prior knowledge.

⁹⁸ • We introduce causal inference to further refine the shape ⁹⁹ prior, so as to eliminate the distraction of irrelevant in-¹⁰⁰ formation.

¹⁰¹ • We apply qualitative and quantitative experiments on ¹⁰² ShapeNet-55, PCN, and KITTI datasets, which shows ¹⁰³ that Point-PC improves the accuracy and plausibility of ¹⁰⁴ point cloud completion.

¹⁰⁵ 2 Related Work

¹⁰⁶ 2.1 Point Cloud Completion

 Most recent state-of-the-art completion methods focus on the decoding process of recovering fine details instead of pro- viding sufficient geometric guidance from partial inputs in the encoding process [\[Xiang](#page-8-10) *et al.*, 2021; Xie *et al.*[, 2020b;](#page-8-7) [Tchapmi](#page-8-11) *et al.*, 2019]. The first learning-based work PCN [Yuan *et al.*[, 2018\]](#page-8-5) generates a coarse completion based on a learned global feature and is then upsampled combined with the assumption that a 3D object lies on a 2D-manifold. Later researches focus on mitigating mature learning-based struc- [t](#page-7-12)ures. Some previous methods [Liu *et al.*[, 2019b;](#page-7-11) Liu *[et al.](#page-7-12)*, [2019a\]](#page-7-12) voxelized the point cloud into binary voxels to mi- grate 3D convolutions, which cubically increased the com- putational cost, whereas other methods [\[Huang](#page-7-8) *et al.*, 2020; [Mandikal and Babu, 2019\]](#page-7-13) process coordinates directly by Multi-Layer Perceptrons, yet losing geometric information with pooling-based aggregation operations. These two kinds of completion methods ignore relation and context across points, thus failing to preserve regional information of lo- ¹²⁴ [c](#page-8-11)al patterns. To solve this problem, TopNet [\[Tchapmi](#page-8-11) *et* ¹²⁵ *al.*[, 2019\]](#page-8-11) constrains the point completion process as the ¹²⁶ growth of a hierarchical rooted tree where several child points 127 are projected by a parent point in a feature expansion layer. ¹²⁸ On the other hand, SnowflakeNet [Xiang *et al.*[, 2021\]](#page-8-10) mod- ¹²⁹ els point cloud completion procedure as the generation of a ¹³⁰ snowflake. Furthermore, by breaking the point cloud into 131 [s](#page-7-14)everal sequential patches, transformer-based methods [\[Guo](#page-7-14) 132 *et al.*[, 2021;](#page-7-14) Yu *et al.*[, 2021;](#page-8-8) Zhou *et al.*[, 2022\]](#page-8-12) are proved ¹³³ to efficiently handle large-scale point cloud and enhance re- ¹³⁴ lations between neighboring points, which outperform and 135 dominate the research prospect. Nevertheless, upsample and 136 expansion modules among the aforementioned methods are 137 based on a global feature vector due to its simplicity, which 138 prevents them from precisely capturing the detailed geome- ¹³⁹ tries and structures of 3D shapes, therefore it is unable for ¹⁴⁰ these methods to arrange the well-structured point splitting 141 in local regions. In order to integrate more geometric infor- ¹⁴² mation explicitly, we utilize a memory network to provide 143 rich structural details and enhance neighboring relations to ¹⁴⁴ recover local regions. 145

2.2 Memory Network 146

The Memory Network [\[Weston](#page-8-13) *et al.*, 2015] was initially 147 presented in dialog systems to save scene information and ¹⁴⁸ realize the functionality of long-term memory. However, ¹⁴⁹ the original design of the Memory Network just vector- ¹⁵⁰ izes and saves the original text without proper modification, ¹⁵¹ thus limiting the promotion of the model. Further works ¹⁵² [\[Sukhbaatar](#page-8-14) *et al.*, 2015; [Liu and Perez, 2017\]](#page-7-15) reinforce the 153 Memory Network so that it can be trained in an end-to-end 154 way. Hierarchical Memory Network [\[Chandar](#page-7-16) et al., 2016; 155 Xu *et al.*[, 2016\]](#page-8-15) stores and searches memory in a hierarchical 156 structure to speed up calculations when implementing large-
157 [s](#page-7-17)cale memory. Key-Value Memory Network [\[Miller](#page-7-17) *et al.*, 158 [2016\]](#page-7-17) stores memory slots in a "key-value" pair where the ¹⁵⁹ key module is responsible for scoring the degree of correla- ¹⁶⁰ tion between memory and queries, while the value module 161 is responsible for weighting and summing the values of the ¹⁶² memory to obtain the output. In our work, we further extend 163 the application of "key-value" structured memory into point 164 cloud completion and reveal its ability for preserving high- ¹⁶⁵ quality geometry details through a well-designed pre-training ¹⁶⁶ method. 167

2.3 Causal Inference 168

Causal Inference was first introduced by [\[Pearl, 2000\]](#page-7-18). Re- ¹⁶⁹ cent research [Hu *et al.*[, 2021;](#page-7-19) Niu *et al.*[, 2020\]](#page-7-20) has shown that 170 causal inference is beneficial to various fields in computer ¹⁷¹ vision. VC R-CNN [Wang *et al.*[, 2020\]](#page-8-16) proposes that ob- ¹⁷² servational bias causes the model to make predictions based 173 on co-occurrence information while ignoring some common- ¹⁷⁴ sense causal relationships, and attempts to extract a visual 175 feature that contains common sense through causal interven- ¹⁷⁶ tion. CONTA [Zhang *et al.*[, 2020a\]](#page-8-17) attributes the cause of 177 the ambiguous boundaries of pseudo-masks to the confound- ¹⁷⁸ ing context, and uses backdoor adjustment to eliminate the 179 confounder and generate better pixel-level pseudo masks by 180

Figure 2: The overall architecture of Point-PC, which consists of four main modules: (i) pre-trained partial shape encoder, (ii) memory network, (iii) prior knowledge selection module, and (iv) shape decoder. The pre-trained encoder extracts feature from the partial input, which is then fed into memory. The memory network retrieves shape priors with sufficient geometric information. Moreover, the prior knowledge selection module selects useful information from the prior shapes. The shape decoder takes the concatenation of the partial shape feature and the shape prior feature to generate the complete point cloud.

 using only image-level labels. Ifsl [Yue *et al.*[, 2020\]](#page-8-18) argues that the pre-trained knowledge is essentially a confounder that causes spurious correlations between the sample features and class labels in the support set and removes the confounding bias using the backdoor adjustment. To our best knowledge, we are the first to introduce causal inference to point cloud completion. We introduce a causal feature fusion strategy to mitigate the confounding effect in shape priors. It encourages the decoder to pay more attention to causal features, which will also enhance the robustness of the memory network.

¹⁹¹ 3 Our Approach

 The overall architecture of Point-PC is shown in Figure [2,](#page-2-0) which consists of four modules: pre-train encoder, memory network, prior knowledge selection module, and shape de-coder. We will detail each of our designs in the following.

¹⁹⁶ 3.1 Memory Network

 The memory network aims to learn the dependency of par- tial and complete shapes in feature space and produce the prior shapes. Denote the input set of partial point clouds 200 as $S = {\{\mathcal{I}_i\}}_{i=1}^{|S|}$, where $\mathcal{I}_i \in \mathbb{R}^{N \times 3}$ represents each point 201 in the object, \overline{N} is the point number of a shape. We con- struct the memory network in a "key-value-age" formation. The "key" and "value" represent complete shape features and the corresponding 3D shapes, respectively. The "age" indicates how long the corresponding "key-value" pair has been established. Therefore, the memory item is denoted as $\mathcal{M} = (K_i, V_i, A_i)_{i=1}^{|\mathcal{M}|}$, where $|\mathcal{M}|$ is the size of the memory.

 Compared with other methods, the memory network uti- lizes the "key" and "value" to improve the effectiveness of prior shapes. Meanwhile, the "key" and "value" can also be updated by the training data and improve the relevance of obtaining prior information. Next, we will introduce the model ²¹² update and retrieval process in two parts. ²¹³

Update Strategy 214

 K_i is extracted through the pre-trained complete shape en- 215 coder from V_i , which can be denoted as F^{V_i} . It is worth not- 216 ing that the updating strategy only works at training because ²¹⁷ we take the training set as our external knowledge base, which 218 can not be available during testing. 219

We compute the cosine similarity between $F^{\mathcal{I}}$ and F^{V_i} to 220 match a "key-value" pair as follows: 221

$$
Sim_{key}\left(F^{\mathcal{I}}, F^{V_i}\right) = \frac{F^{\mathcal{I}} \cdot F^{V_i}}{\|F^{\mathcal{I}}\| \|F^{V_i}\|}.
$$
 (1)

To measure whether it is a valid match, we adopt Chamfer 222 Distance [Yuan *et al.*[, 2018\]](#page-8-5) as the similarity measurement 223 between the corresponding ground truth V and the value V_i 224 in 3D space. If the Chamfer Distance Sim_{value} exceeds a 225 threshold δ (discussed in the ablation study), it is a positive 226 match and vice versa. For a positive match, the value $V_{n₀}$ 227 stays unchanged, while the key $F^{V_{n_0}}$ is updated as below: 228

$$
F^{V_{n_0}} = \frac{F^{\mathcal{I}} + F^{V_{n_0}}}{\|F^{\mathcal{I}} + F^{V_{n_1}}\|},\tag{2}
$$

where $n_0 = \arg \max_i Sim_{key} (F^{\mathcal{I}}, F^{V_i})$. In the meantime, 229 except for the corresponding age A_{n_0} to be set to zero, all the 230 other ages should be increased by one. For a negative match, ²³¹ V is read into the memory and should overwrite the oldest 232 slot as follows: 233

$$
K_{n_1} = F^{\mathcal{I}}, V_{n_1} = \mathcal{V}, \tag{3}
$$

where n_1 depends on $n_1 = \arg \max_i (A_i)$. The ages here are 234 updated in the same way as mentioned above. In this way, the 235 memory network reinforces its reception ability with similar 236 shapes, saves the unknown shapes, and refreshes the oldest 237 memory slot. 238

Algorithm 1 Update and Query Strategy

Input: partial point cloud feature $F^{\mathcal{I}}$ **Hyper-parameter:** similarity threshold δ **Output:** shape priors V_{n_i} 1: Let $i = 0$. 2: while $i \leq |\mathcal{M}| - 1$ do 3: Compute Sim_{key} $(F^{\mathcal{I}}, F^{V_i})$ by Eq. [1.](#page-2-1) 4: **if** $(Sim_{value} (V, V_{n_1}) \ge \delta)$ **then** 5: Let $n_0 = \arg \max_i Sim_{key} (F^{\mathcal{I}}, F^{V_i}),$ 6: Update K_{n_0} by Eq. [2,](#page-2-2)
7: Set $A_{n_0} = 0$, $A_i = A_i$ Set $A_{n_0} = 0, A_i = A_i + 1$ $(i \neq n_0)$. 8: else 9: Let $n_1 = \arg \max_i (A_i)$. 10: Update K_{n_1} and V_{n_1} by Eq. [3,](#page-2-3) 11: Set $A_{n_1} = 0, A_i = A_i + 1 (i \neq n_1).$ 12: end if 13: end while 14: **return** V_{n_i} by Eq. [4.](#page-3-0)

²³⁹ Query Strategy

 We propose a query strategy for obtaining shape priors that are rich in geometric information for completion and very similar to the partial input. These shape priors are the val- ues in the memory, which are complete point clouds. To 244 fix the number of shape priors fed forward, we retrieve \vec{k} shapes through top- \vec{k} keys with the largest similarity for con-venience, which can be formulated as:

$$
V = \left[V_{n_i} | n_i = \arg\max_i Sim_{key} \left(F^{\mathcal{I}}, F^{V_i} \right) \right]. \tag{4}
$$

²⁴⁷ The simplified update and query process is described in Al-²⁴⁸ gorithm [1.](#page-3-1)

²⁴⁹ 3.2 Pre-training Scheme

²⁵⁰ The pre-training scheme aims to minimize the distance be-²⁵¹ tween partial point clouds and complete point clouds, as well ²⁵² as enhance the consistency of partial shape features. Given 253 the complete shape denoted as $S_i \in \mathbb{R}^{N \times 3}$, where N is ²⁵⁴ the number of points, we render the corresponding partial 255 ones \mathcal{I}_{i,n_1} and \mathcal{I}_{i,n_2} in different viewpoints and crop differ-256 ent numbers of n_1 and n_2 points. We provide a visualization ²⁵⁷ of the overall pre-training scheme in the supplementary ma-²⁵⁸ terial.

²⁵⁹ Intra-modality Learning

267

260 Suppose that \mathcal{I}_{i,n_1} and \mathcal{I}_{i,n_2} are fed into the partial shape en-261 coder E_K to extract features $F_{i,n_1}^K, F_{i,n_2}^K \in \mathbb{R}^{1 \times C}$, where C ²⁶² is the feature dimension. Following the NT-Xent loss in Sim-263 CLR [Chen *et al.*[, 2020\]](#page-7-21), given a positive pair $(F_{i,n_1}^K, F_{i,n_2}^K)$, 264 we treat the other $2(N - 1)$ examples within a minibatch as 265 negative examples, where N is the size of the minibatch. The 266 intra-modality contrastive loss \mathcal{L}_{intra} can be formulated as:

$$
l_{\text{intra}}(i; n_1, n_2) = -\log \frac{Sim_{pos}(i; n_1, n_2)}{Sim_{neg}(i; n_1, n_2)},\tag{5}
$$

$$
\mathcal{L}_{\text{intra}} = \frac{1}{2N} \sum_{i=1}^{N} (l_{\text{intra}}(i; n_1, n_2) + l_{\text{intra}}(i; n_2, n_1)), \quad (6)
$$

where $Sim_{pos}(i; n_1, n_2)$ and $Sim_{neg}(i; n_1, n_2)$ represent the 268 positive and negative cosine similarity between the same par- ²⁶⁹ tial inputs but with a different incomplete pattern. The cosine ²⁷⁰ similarity function is defined as follows: 271

$$
Sim_{pos}(i; n_1, n_2) = \exp\left(sim\left(F_{i, n_1}^K, F_{i, n_2}^K\right) / \tau\right),
$$

\n
$$
Sim_{neg}(i; n_1, n_2) = \sum_{j=1}^N \mathbb{I}_{[j \neq i]} \exp\left(sim\left(F_{i, n_1}^K, F_{j, n_1}^K\right) / \tau\right)
$$

\n
$$
+ \sum_{j=1}^N \exp\left(sim\left(F_{i, n_1}^K, F_{j, n_2}^K\right) / \tau\right),
$$
\n(7)

where $\mathbb{I}_{[j\neq i]} \in \{0,1\}$ is an indicator function evaluating to 1 272 if $j \neq i$ and τ is the temperature parameter which we set to 273 $0.1.$ 274

Cross-modality Learning 275

Considering that the partial shape features should keep con- ²⁷⁶ sistent with the complete shape features, for each S_i , we ex- 277 tract features $F_i^V \in \mathbb{R}^{1 \times C}$ by the complete shape encoder 278 E_V . Together with the partial shape features F_i^K , the cross- 279 modality contrastive loss \mathcal{L}_{cross} is indicated as follows: 280

$$
l_{\text{intra}}(i; K, V) = -\log \frac{Sim_{pos}(i; K, V)}{Sim_{neg}(i; K, V)},
$$
\n(8)

$$
\mathcal{L}_{\text{cross}} = \frac{1}{2N} \sum_{i=1}^{N} \left(l_{\text{cross}}(i; K, V) + l_{\text{cross}}(i; V, K) \right) \tag{9}
$$

where $Sim_{pos}(i; K, V)$ and $Sim_{neg}(i; K, V)$ represent the 282 positive and negative cosine similarity between the partial and ²⁸³ complete shape features. The overall pre-training loss func- ²⁸⁴ tion \mathcal{L}_{pre} is the sum of the intra-modality and cross-modality 285 $\mathcal{L}_{pre} = \mathcal{L}_{intra} + \mathcal{L}_{cross}.$ 286

3.3 Prior Knowledge Selection Module 287

We exploit causal theory [\[Pearl, 2013\]](#page-7-22) to dig out the true 288 causality of the extracted features and generated 3D shapes. ²⁸⁹ The causal graph is shown as Figure [3.](#page-4-0) 290

We list the following explanations for the causalities 291 among the four variables shown in Figure [3:](#page-4-0) 292

- $M \to I$. Since the retrieved shapes share the same se- 293 mantic structures as the partial inputs, this causal effect 294 is naturally established. 295
- $I \rightarrow C \leftarrow M$. The variable C denotes the causal feature 296 that is truly responsible for the completion result. We ²⁹⁷ not only keep the original part I but also add M as the 298 supplementary information. 299
- $C \rightarrow Y$. The causality reflects the intrinsic association 300 of the feature space and 3D coordinate space. 301

Investigating the causal graph above, we recognize a back- ³⁰² door path between M and I, *i.e.*, $M \rightarrow I$, wherein the M 303 plays a role of confounder between I and C . This backdoor 304 path will cause I to create a false correlation with Y even if 305 I is not the only one directly linked to Y , resulting in gen- 306 erating low-quality shapes. Hence, it is crucial to cut off the 307 backdoor path. 308

281

Figure 3: Causal graph for Backdoor Adjustment Module. Circles represent variables, and arrows represent causal relationships from one variable to another.

³⁰⁹ Backdoor Adjustment

310 Instead of modeling the confounded $P(Y|I)$ in Figure [3,](#page-4-0) we need to eliminate the backdoor path. According to causal the- ory, we exploit the do-calculus on the variable M to remove 313 the backdoor path by estimating $P_B(Y|I) = P(Y|do(I))$ which stratifies the confounder M. We then obtain the fol-lowing derivations:

- ³¹⁶ The features extracted from memory will not be af-317 fected by cutting off the backdoor path. Thus, $P(m) =$ 318 $P_B(m)$.
- $319 \cdot C$ has nothing to do with the causal effect between the 320 variable M and I, which we can get $P_B(C|I, m)$ = 321 $P(C|I, m)$.
- 322 After the causal intervention, the variable m is indepen-323 dent from I, for which we have $P_B(m) = P_B(m|I)$.

 B refers to the case when the backdoor path is cut off, and $m \in M$ denotes the confounder sets. Driven by the deriva- tions above, the backdoor adjustment for Figure [3](#page-4-0) can be writ-³²⁷ ten as:

$$
P(Y | do(I)) = \sum_{m \in M} P_B(Y|I, m) P_B(m|I)
$$

=
$$
\sum_{m \in M} P_B(Y|I, m) P_B(m)
$$

=
$$
\sum_{m \in M} P(Y|I, m) P(m),
$$
 (10)

328 where $P(Y|I,m)$ represents the conditional probability 329 given the partial shape feature and confounder; $P(m)$ is the ³³⁰ prior probability of the confounder.

331 Module Design

 Driven by Eq. [10,](#page-4-1) we design the prior knowledge selection module to alleviate the confounding effect in shape priors. Our implementation idea is stratifying the confounder and pairing the partial shape feature with every stratification. To- wards this end, we make the implicit intervention on feature-337 wise sampling. Suppose that H is the index set of the dimen- sions of the concatenated shape prior feature from the last 339 layer of the shape prior encoder. We divide H into n equal- size disjoint subsets, e.g., the output feature dimension of the shape prior encoder is 384, if we select top-3 shape priors and $n = 6$, the i-th set will be a feature dimension index set of size $1152/6 = 192$, i.e., $\mathcal{H}_m = 192(m-1) + 1, ..., 192m$.

- $P(Y|I, m) = P_{\phi}(Y|cat(F_I, [F_V]_c))$, where F_I and F_V 344 are the partial shape feature and the concatenated shape 345 prior feature, respectively. $[F_V]_c$ is a feature selector 346 which selects the dimensions of F_V according to the index set c. Note that $c = \{k | k \in \mathcal{H}_m \cap \mathcal{S}_t\}$, where \mathcal{S}_t 348 is an index set whose corresponding absolute values in ³⁴⁹ F_V are larger than the threshold t. And ϕ represents the 350 parameters of the shape decoder. 351
- $P(m) = 1/n$, where we assume a uniform prior distribution for the adjusted features. n is the number of 353 confounder set. 354

Thus, the overall feature-wise adjustment is: 355

$$
P(Y \mid do(I)) = \frac{1}{n} \sum_{m \in M} P_{\phi}(Y | cat(F_I, [F_V]_c)). \tag{11}
$$

To optimize the ϕ in the above Eq. [11,](#page-4-2) we propose a slightly 356 modified L1 Chamfer Distance loss guided by the backdoor 357 adjustment. Let $\mathcal G$ be the notation of high-resolution ground 358 truth, and P be the notation of the completed prediction. The $\frac{359}{250}$ \mathcal{L}_{caus} can be written as: 360

$$
\mathcal{P} = \Phi(cat(F_I, [F_V]_c)),\tag{12}
$$

$$
\mathcal{L}_{caus} = \frac{1}{n} \sum_{m \in M} \left(CD - \ell_1(\mathcal{P}, \mathcal{G}) \right), \tag{13}
$$

where Φ represents the shape decoder, and $cat(\cdot, \cdot)$ denotes 362 the concatenate operation. The Eq. [13](#page-4-3) pushes the predictions 363 of such intervened partial-complete probability to be invariant ³⁶⁴ and stable across different stratifications, due to the shared ³⁶⁵ causal features. 366

We follow the existing works [Yu *et al.*[, 2021\]](#page-8-8) to use the 367 L1 Chamfer Distance [Fan *et al.*[, 2016\]](#page-7-23) as a quantitative mea- ³⁶⁸ surement for the quality of output. Apart from generating P , 369 Point-PC also predicts local centers $\mathcal C$ of the completed point 370 cloud. For each prediction, the L1 Chamfer Distance loss ³⁷¹ function between the central point set and the ground truth \mathcal{G} 372 is calculated as: 373

$$
\mathcal{L}_{recon} = \frac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} \min_{g \in \mathcal{G}} ||c - g||_1 + \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} \min_{c \in \mathcal{C}} ||g - c||_1. (14)
$$

The final objective function can be defined as the sum of the 374 losses: $\mathcal{L} = \lambda \mathcal{L}_{caus} + (1 - \lambda) \mathcal{L}_{recon}$, where λ is a hype- 375 parameter used to control the contribution of different losses 376 in the optimization process. 377

4 Experiment 378

In this section, we first present the experimental results on 379 ShapeNet-55/34 [Yu *et al.*[, 2021\]](#page-8-8), PCN [Yuan *et al.*[, 2018\]](#page-8-5), ³⁸⁰ and KITTI [\[Geiger](#page-7-7) *et al.*, 2013]. Then, we visualize and an- ³⁸¹ alyze the results for both our method and several baseline ³⁸² methods. Finally, we also provide detailed ablation studies ³⁸³ of our method. 384

4.1 Results on ShapeNet-55 385

Following the evaluation setting in [Yu *et al.*[, 2021\]](#page-8-8), 8 fixed 386 viewpoints are selected, and the number of points in the par- ³⁸⁷ tial point cloud is set to 2,048, 4,096, and 6,144 (25%, 50%, ³⁸⁸

361

Methods	Table	`hair	Airplane	Car	Sofa	Birdhouse	Bag	Remote	Keyboard	Rocket	$CD-S$	CD-M	CD-H	CD -Avg	$F-Score@1%$
FoldingNet	$\angle 53$	2.81	1.43	.98	2.48	4.71	2.79	1.44	1.24	.48	2.67	$2.66(-0.01)$	$4.05(+1.38)$	3.12	0.082
PCN	2.13	2.29	1.02	.85	2.06	4.5	2.86	1.33	0.89	1.32	. 94	$.96(+0.02)$	$4.08(+2.14)$	2.66	0.133
TopNet	2.21	2.53	1.14	2.18	2.36	4.83	2.93	1.49	0.95	1.32	2.26	$2.16(-0.10)$	$4.30(+2.26)$	2.91	0.126
PFNet	3.95	4.24	1.81	2.53	3.34	6.21	4.96	2.91	1.29	2.36	3.83	$3.87(+0.04)$	$7.97(+4.10)$	5.22	0.339
GRNet	1.63	1.88	1.02	. .64	1.72	2.97	2.06	1.09	0.89	1.03	1.35	$1.71(+0.36)$	$2.85(+1.50)$	1.97	0.238
PoinTr	0.81	0.95	0.44	0.91	0.79	1.86	0.93	0.53	0.38	0.57	0.58	$0.88(+0.30)$	$1.79(+1.21)$	1.09	0.464
Point-PC	1.16	.26	0.58	1.05	1.19	2.14	1.58	0.68	0.53	0.79	.16	$1.23(+0.07)$	$2.04(+0.88)$	1.48	0.426

Table 1: Quantitative results of our methods and several baselines on ShapeNet-55. Detailed results for each method on 10 selected categories are reported, as well as the overall results on 55 categories. CD-S, CD-M, and CD-H represent the CD- ℓ_2 results under the simple, moderate, and hard settings, respectively. Red/green numbers represent increments of $CD-\ell_2$ results compared to results under the CD-S setting.

 and 75% of the whole point cloud), which divides the test- ing stage into three difficulty degrees of simple, moderate, and hard (denoted as CD-S, CD-M, and CD-H). As shown 392 in Table. [1,](#page-5-0) Point-PC achieves an average CD- ℓ_2 (multiplied by 1000) of 1.48 and F-Score@1% of 0.426 on ShapeNet- 55, which shows the effectiveness of Point-PC encountering diverse categories of objects. It is worth noting that the in-396 crements of CD- ℓ_2 under CD-M(+0.07) and CD-H(+0.88) strategy demonstrate that Point-PC better deals with diverse incompleteness levels and diverse incomplete patterns com- pared to the state-of-the-art methods. Furthermore, we report the results for categories with sufficient(first 5 columns) and insufficient(following 5 columns) training samples. Point- PC performs evenly despite the training sample imbalance. Quantitative results on ShapeNet-55 show that Point-PC can generate complete point clouds in a variety of situations.

 The qualitative comparison results are shown in Figure. [4.](#page-5-1) The proposed Point-PC performs better with fine details than the other methods. For example, in the bottle category, Point- PC predicts a more smooth and more regular structure of bot- tle edges compared with the other methods. Moreover, Point- PC retains the original details of the partial shapes. In the fifth column of Figure. [4,](#page-5-1) Point-PC not only generates the incom- plete lamp bracket with a clear structure but also keeps the texture of the lamp shade, which makes it a more plausible completion than the other methods. Consequently, Point-PC effectively learns the geometric information based on the ex- isting partial shape, retrieves similar shape priors based on the learned information and reconstructs complete shapes with more regular arrangements and surface smoothness.

4.2 Results on ShapeNet-34

 We utilize ShapeNet-34 to evaluate the performance of Point- PC on novel objects from categories that do not appear in the training phase. As shown in Table[.2,](#page-6-0) our method achieves the best scores of 0.444 F-Score@1% on 34 seen categories and 0.406 F-Score@1% on 21 unseen categories. In particular, we observe fewer gaps between the results of 34 seen cate- gories and 21 unseen categories under each difficulty setting, which demonstrates the superiority of shape priors offered by the memory network. We also provide the visual comparison with GRNet on novel categories in Figure[.5,](#page-6-1) which show the effectiveness of Point-PC in this more challenging setting.

4.3 Results on PCN

 We compare several SOTA methods on the PCN dataset. The related experimental results are shown in Table[.3.](#page-6-2) Our pro-posed method stands out and produces the best results in 3 out

Figure 4: Qualitative results on ShapeNet-55 benchmark. All methods above take samples in the first row as inputs and generate complete point clouds.

of 8 categories. In terms of average $CD-\ell_1$, Point-PC achieves 435 second-best score of 8.50, which illustrate that Point-PC per- 436 forms favorably against state-of-the-art completion networks. ⁴³⁷

4.4 Results on KITTI Benchmark 438

We report both the results of Fidelity and MMD metrics in 439 Table[.4](#page-6-3) on the KITTI dataset. The Fidelity measures the av- ⁴⁴⁰ erage distance between points in the input and their nearest ⁴⁴¹ neighbors in the output, representing how well the input is ⁴⁴² preserved. MMD is the Chamfer Distance between the com- ⁴⁴³ pletion result and the closest ground truth in ShapeNetCars, ⁴⁴⁴ indicating how much the reconstruction resembles a typical 445 car. Observed in Table[.4,](#page-6-3) Point-PC shows better generaliza- ⁴⁴⁶

Methods			34 seen categories			21 unseen categories					
	$CD-S$	$CD-M$	$CD-H$	CD -Avg	F1	$CD-S$	$CD-M$	$CD-H$	CD -Avg	$F-Score@1%$	
FoldingNet	1.86	1.81	3.38	2.35	0.139	2.76	2.74	5.36	3.62	0.095	
PCN	187	1.81	2.97	2.22	0.154	3.17	3.08	5.29	3.85	0.101	
TopNet	1.77	1.61	3.54	2.31	0.171	2.62	2.43	5.44	3.5	0.121	
PFNet	3.16	3.19	7.71	4.68	0.347	5.29	5.87	13.33	8.16	0.322	
GRNet	1.26	1.39	2.57	1.74	0.251	1.85	2.25	4.87	2.99	0.216	
PoinTr	0.76	1.05	1.88	1.23	0.421	1.04	1.67	3.44	2.05	0.384	
Point-PC	1.17	1.46	2.21	1.61	0.444	1.62	2.05	3.15	2.27	0.406	

Table 2: Quantitative results on ShapeNet-34 evaluated as CD- ℓ_2 (multiplied by 1000) and F-Score@1%.

Figure 5: Quantitative results on objects of novel categories that do not appear in the training set. We show the input partial point cloud and the ground truth as well as the prediction of GRNet and Point-PC.

 tion ability compared with previous methods, achieving a Fi- delity of 0.398 and MMD of 0.527. Qualitative results can be found in the supplementary material. Compared with other public datasets, the KITTI dataset is composed of a sequence of real-world scans. The points in the data are more sparse and lack regularity, which brings greater challenges to data completion. However, our approach achieves the best perfor- mance, which further proves the necessity of prior knowledge for guiding the point cloud completion.

⁴⁵⁶ 4.5 Model Design Analysis

 To examine the effectiveness of our designs, we conduct de- tailed ablation studies. The results of the novel modules of Point-PC are shown in Table[.5.](#page-6-4) The baseline model A refers to a geometry-aware transformer encoder and a foldingnet- based decoder in an "encoder-decoder" pattern. This model generates poor results. We then add the memory network and 463 improves the baseline by 4.84 in the CD- ℓ_1 metric, which means that the memory network provides more geometric in- formation to improve the performance. However, due to the lack of consistent representational learning of complete and partial shapes, the relevance of prior information cannot be guaranteed. Thus, it did not get the best results. When apply-ing well-designed pre-training with intra- and cross-modality

Methods	Air	Cab	Car	Cha	Lam	Sof	Tab	Wat	CD -Avg
FoldingNet	9.49	15.8	12.61	15.55	16.41	15.97	13.65	14.99	14.31
AtlasNet	6.37	11.94	10.1	12.06	12.37	12.99	10.33	10.61	10.85
PCN	5.50	22.70	10.63	8.70	11.00	11.34	11.68	8.59	9.64
TopNet	7.61	13.31	10.9	13.82	14.44	14.78	11.22	11.12	12.15
MSN	5.60	11.90	10.30	10.20	10.70	11.60	9.60	9.90	10.00
GRNet	6.45	10.37	9.45	9.41	7.96	10.51	8.44	8.04	8.83
PoinTr	4.75	10.47	8.68	9.39	7.75	10.93	7.78	7.29	8.38
Point-PC	4.89	10.20	8.56	9.24	8.65	9.70	8.62	8.14	8.50

Table 3: Quantitative results on the PCN dataset. We report detailed results on each category and the average results under the CD- ℓ_1 (multiplied by 1000) metric.

	FoldingNet AtlasNet PCN TopNet MSN PFNet GRNet Point-PC					
Fidelity MMD	7.467 0.537	1.759 2.108	2.235 5.354 0.434 1.137 1.366 0.636 2.259 0.792 0.568 0.527		0.816	0.398

Table 4: Quantitative results on the KITTI dataset under the metrics of Fidelity Distance and MMD(Minimal Matching Distance). Lower is better.

learning (model C), we observe another improvement of 0.71 470 in the Chamfer distance, which is a sign of retrieving more 471 relevant shape priors. By adding the prior knowledge se- ⁴⁷² lect module to Point-PC, the performance can be further im- ⁴⁷³ proved, achieving an average CD- ℓ_2 of 8.5, which indicates 474 that the causal model effectively removes existing structural 475 information and save missing shape information to improve ⁴⁷⁶ the integrity of the fused representation. The ablation study 477 clearly demonstrates the effectiveness of key components in ⁴⁷⁸ Point-PC. The ablation studies on the number of shape priors 479 and the similarity threshold δ can be found in the supplemen- 480 tary material. 481

Table 5: Ablation study on the PCN dataset. We investigate different designs including the Memory Network, the pre-train scheme, and the prior knowledge selection module(PKS Module).

5 Conclusion ⁴⁸²

In this paper, we propose a novel approach to point cloud 483 completion called Point-PC, which proposes a new memory- ⁴⁸⁴ based architecture to search prior shapes and designs an ef- ⁴⁸⁵ fective causal inference model to choose missing shape infor- ⁴⁸⁶ mation as supplemental geometric information to aid point ⁴⁸⁷ cloud completion. Specifically, the update mechanism of the ⁴⁸⁸ memory network can optimize the retrieval distance based ⁴⁸⁹ on the training data, thereby improving the accuracy of the ⁴⁹⁰ prior shape. To our best knowledge, this is the first work ⁴⁹¹ to introduce a causal graph into the point cloud completion ⁴⁹² task, which effectively filters shape information from previ- ⁴⁹³ ous shapes and preserves missing shape information to im- ⁴⁹⁴ prove the integrity and ultimate performance of the fused rep- ⁴⁹⁵ resentation. Comprehensive experiments show the effective- ⁴⁹⁶ ness and superiority of Point-PC compared to state-of-the-art 497 competitors. 498

⁴⁹⁹ References

- ⁵⁰⁰ [Cao *et al.*, 2022] Rui Cao, Kaiyi Zhang, Yang Chen, Xim-⁵⁰¹ ing Yang, and Cheng Jin. Point cloud completion via ⁵⁰² multi-scale edge convolution and attention. *Proceedings* ⁵⁰³ *of the 30th ACM International Conference on Multimedia*,
- ⁵⁰⁴ 2022.
- ⁵⁰⁵ [Chandar *et al.*, 2016] A. P. Sarath Chandar, Sungjin Ahn, ⁵⁰⁶ H. Larochelle, Pascal Vincent, Gerald Tesauro, and ⁵⁰⁷ Yoshua Bengio. Hierarchical memory networks. *ArXiv*,
- ⁵⁰⁸ abs/1605.07427, 2016.
- ⁵⁰⁹ [Chang *et al.*, 2015] Angel X. Chang, Thomas A. ⁵¹⁰ Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qix-
- ⁵¹¹ ing Huang, Zimo Li, Silvio Savarese, Manolis Savva,
- ⁵¹² Shuran Song, Hao Su, Jianxiong Xiao, L. Yi, and Fisher
- ⁵¹³ Yu. Shapenet: An information-rich 3d model repository. ⁵¹⁴ *ArXiv*, abs/1512.03012, 2015.
- ⁵¹⁵ [Chen *et al.*, 2020] Ting Chen, Simon Kornblith, Moham-⁵¹⁶ mad Norouzi, and Geoffrey E. Hinton. A simple frame-⁵¹⁷ work for contrastive learning of visual representations. ⁵¹⁸ *ArXiv*, abs/2002.05709, 2020.
- ⁵¹⁹ [Fan *et al.*, 2016] Haoqiang Fan, Hao Su, and Leonidas J. ⁵²⁰ Guibas. A point set generation network for 3d object re-⁵²¹ construction from a single image. *2017 IEEE Conference* ⁵²² *on Computer Vision and Pattern Recognition (CVPR)*,
- ⁵²³ pages 2463–2471, 2016.
- ⁵²⁴ [Geiger *et al.*, 2013] Andreas Geiger, Philip Lenz, Christoph ⁵²⁵ Stiller, and Raquel Urtasun. Vision meets robotics: The ⁵²⁶ kitti dataset. *The International Journal of Robotics Re-*⁵²⁷ *search*, 32:1231 – 1237, 2013.
- ⁵²⁸ [Guo *et al.*, 2021] Meng-Hao Guo, Junxiong Cai, Zheng-
- ⁵²⁹ Ning Liu, Tai-Jiang Mu, Ralph Robert Martin, and Shimin ⁵³⁰ Hu. Pct: Point cloud transformer. *Comput. Vis. Media*, ⁵³¹ 7:187–199, 2021.
- ⁵³² [Han *et al.*, 2017] Zhizhong Han, Zhenbao Liu, Chi-Man ⁵³³ Vong, Yu-Shen Liu, Shuhui Bu, Junwei Han, and
- ⁵³⁴ C. L. Philip Chen. Boscc: Bag of spatial context correla-⁵³⁵ tions for spatially enhanced 3d shape representation. *IEEE*
- ⁵³⁶ *Transactions on Image Processing*, 26:3707–3720, 2017. ⁵³⁷ [Han *et al.*, 2018a] Zhizhong Han, Zhenbao Liu, Chi-Man
- ⁵³⁸ Vong, Yu-Shen Liu, Shuhui Bu, Junwei Han, and ⁵³⁹ C. L. Philip Chen. Deep spatiality: Unsupervised learning ⁵⁴⁰ of spatially-enhanced global and local 3d features by deep ⁵⁴¹ neural network with coupled softmax. *IEEE Transactions* ⁵⁴² *on Image Processing*, 27:3049–3063, 2018.
- ⁵⁴³ [Han *et al.*, 2018b] Zhizhong Han, Mingyang Shang, Yu-⁵⁴⁴ Shen Liu, and Matthias Zwicker. View inter-prediction ⁵⁴⁵ gan: Unsupervised representation learning for 3d shapes ⁵⁴⁶ by learning global shape memories to support local view ⁵⁴⁷ predictions. In *AAAI Conference on Artificial Intelligence*, ⁵⁴⁸ 2018.
- ⁵⁴⁹ [Han *et al.*, 2019] Zhizhong Han, Chao Chen, Yu-Shen Liu, ⁵⁵⁰ and Matthias Zwicker. Shapecaptioner: Generative cap-⁵⁵¹ tion network for 3d shapes by learning a mapping from ⁵⁵² parts detected in multiple views to sentences. *Proceedings* ⁵⁵³ *of the 28th ACM International Conference on Multimedia*, ⁵⁵⁴ 2019.
- [Hu *et al.*, 2021] Xinting Hu, Kaihua Tang, Chunyan Miao, ⁵⁵⁵ Xiansheng Hua, and Hanwang Zhang. Distilling causal ef- ⁵⁵⁶ fect of data in class-incremental learning. *2021 IEEE/CVF* ⁵⁵⁷ *Conference on Computer Vision and Pattern Recognition* ⁵⁵⁸ *(CVPR)*, pages 3956–3965, 2021. 559
- [Huang *et al.*, 2020] Zitian Huang, Yikuan Yu, Jiawen Xu, ⁵⁶⁰ Feng Ni, and Xinyi Le. Pf-net: Point fractal network for 3d 561 point cloud completion. *2020 IEEE/CVF Conference on* ⁵⁶² *Computer Vision and Pattern Recognition (CVPR)*, pages 563 7659–7667, 2020. ⁵⁶⁴
- [Li *et al.*, 2022] Jun Li, Shangwei Guo, Zhengchao Lai, Xi- ⁵⁶⁵ antong Meng, and Shaokun Han. Completedt: Point cloud ⁵⁶⁶ completion with dense augment inference transformers. ⁵⁶⁷ *ArXiv*, abs/2205.14999, 2022.
- [Liu and Perez, 2017] Fei Liu and Julien Perez. Gated endto-end memory networks. In *Conference of the European* ⁵⁷⁰ *Chapter of the Association for Computational Linguistics*, ⁵⁷¹ $2017.$ 572
- [Liu *et al.*, 2019a] Yongcheng Liu, Bin Fan, Shiming Xiang, 573 and Chunhong Pan. Relation-shape convolutional neu- ⁵⁷⁴ ral network for point cloud analysis. *2019 IEEE/CVF* ⁵⁷⁵ *Conference on Computer Vision and Pattern Recognition* ⁵⁷⁶ *(CVPR)*, pages 8887–8896, 2019.
- [Liu *et al.*, 2019b] Zhijian Liu, Haotian Tang, Yujun Lin, and 578 Song Han. Point-voxel cnn for efficient 3d deep learning. 579 *ArXiv*, abs/1907.03739, 2019.
- [Mandikal and Babu, 2019] Priyanka Mandikal and 581 R. Venkatesh Babu. Dense 3d point cloud recon- ⁵⁸² struction using a deep pyramid network. *2019 IEEE* ⁵⁸³ *Winter Conference on Applications of Computer Vision* ⁵⁸⁴ *(WACV)*, pages 1052–1060, 2019. 585
- [Miller et al., 2016] Alexander H. Miller, Adam Fisch, Jesse 586 Dodge, Amir-Hossein Karimi, Antoine Bordes, and Jason 587 Weston. Key-value memory networks for directly reading 588 documents. *ArXiv*, abs/1606.03126, 2016. ⁵⁸⁹
- [Niu *et al.*, 2020] Yulei Niu, Kaihua Tang, Hanwang Zhang, ⁵⁹⁰ Zhiwu Lu, Xiansheng Hua, and Ji rong Wen. Counter- ⁵⁹¹ factual vqa: A cause-effect look at language bias. *2021* ⁵⁹² *IEEE/CVF Conference on Computer Vision and Pattern* ⁵⁹³ *Recognition (CVPR)*, pages 12695–12705, 2020. ⁵⁹⁴
- [Park *et al.*, 2019] Jeong Joon Park, Peter R. Florence, Ju- 595 lian Straub, Richard A. Newcombe, and S. Lovegrove. ⁵⁹⁶ Deepsdf: Learning continuous signed distance functions 597 for shape representation. *2019 IEEE/CVF Conference on* ⁵⁹⁸ *Computer Vision and Pattern Recognition (CVPR)*, pages 599 165–174, 2019. ⁶⁰⁰
- [Pearl, 2000] Judea Pearl. Causality: Models, reasoning and 601 inference. 2000. 602
- [Pearl, 2013] Judea Pearl. Interpretation and identification of 603 causal mediation. *ERN: Other Econometrics: Economet-* ⁶⁰⁴ *ric Model Construction*, 2013. 605
- [Qi *et al.*, 2017] C. Qi, Hao Su, Kaichun Mo, and Leonidas J. 606 Guibas. Pointnet: Deep learning on point sets for 3d clas- 607 sification and segmentation. 2017 IEEE Conference on 608
- *Computer Vision and Pattern Recognition (CVPR)*, pages 77–85, 2017.
- [Sukhbaatar *et al.*, 2015] Sainbayar Sukhbaatar, Arthur D. Szlam, Jason Weston, and Rob Fergus. End-to-end mem-ory networks. In *NIPS*, 2015.
- [Tchapmi *et al.*, 2019] Lyne P. Tchapmi, Vineet Kosaraju,
- Hamid Rezatofighi, Ian D. Reid, and Silvio Savarese. Top-
- net: Structural point cloud decoder. *2019 IEEE/CVF*
- *Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 383–392, 2019.
- [Wang *et al.*, 2018] Nanyang Wang, Yinda Zhang, Zhuwen
- Li, Yanwei Fu, W. Liu, and Yu-Gang Jiang. Pixel2mesh:
- Generating 3d mesh models from single rgb images. In *European Conference on Computer Vision*, 2018.
- [Wang *et al.*, 2020] Tan Wang, Jianqiang Huang, Hanwang
- Zhang, and Qianru Sun. Visual commonsense r-cnn. *2020 IEEE/CVF Conference on Computer Vision and Pattern*
- *Recognition (CVPR)*, pages 10757–10767, 2020.
- [Wen *et al.*, 2020] Xin Wen, Tianyang Li, Zhizhong Han, and Yu-Shen Liu. Point cloud completion by skip- attention network with hierarchical folding. *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 1936–1945, 2020.
- [Wen *et al.*, 2021] Xin Wen, Zhizhong Han, Yan-Pei Cao, Pengfei Wan, Wen Zheng, and Yu-Shen Liu. Cy- cle4completion: Unpaired point cloud completion using cycle transformation with missing region coding. *2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 13075–13084, 2021.
- [Wen *et al.*, 2022] Xin Wen, Peng Xiang, Yaru Cao, Pengfei Wan, Wen Zheng, and Yu-Shen Liu. Pmp-net++: Point cloud completion by transformer-enhanced multi- step point moving paths. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45:852–867, 2022.
- [Weston *et al.*, 2015] Jason Weston, Sumit Chopra, and An- toine Bordes. Memory networks. *CoRR*, abs/1410.3916, 2015.
- [Xiang *et al.*, 2021] Peng Xiang, Xin Wen, Yu-Shen Liu, Yan-Pei Cao, Pengfei Wan, Wen Zheng, and Zhizhong Han. Snowflakenet: Point cloud completion by snowflake point deconvolution with skip-transformer. *2021 IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 5479–5489, 2021.
- [Xie *et al.*, 2020a] Haozhe Xie, Hongxun Yao, Shengping Zhang, Shangchen Zhou, and Wenxiu Sun. Pix2vox++: Multi-scale context-aware 3d object reconstruction from single and multiple images. *International Journal of Com-*
- *puter Vision*, 128:2919 2935, 2020.
- [Xie *et al.*, 2020b] Haozhe Xie, Hongxun Yao, Shangchen Zhou, Jiageng Mao, Shengping Zhang, and Wenxiu Sun. Grnet: Gridding residual network for dense point cloud completion. *ArXiv*, abs/2006.03761, 2020.
- [Xu *et al.*, 2016] Jiaming Xu, Jing Shi, Yiqun Yao, Suncong Zheng, Bo Xu, and Bo Xu. Hierarchical memory networks

for answer selection on unknown words. In *COLING*, ⁶⁶³ 2016. 664

- [Yu *et al.*, 2021] Xumin Yu, Yongming Rao, Ziyi Wang, ⁶⁶⁵ Zuyan Liu, Jiwen Lu, and Jie Zhou. Pointr: Diverse 666 point cloud completion with geometry-aware transform- ⁶⁶⁷ ers. *2021 IEEE/CVF International Conference on Com-* ⁶⁶⁸ *puter Vision (ICCV)*, pages 12478–12487, 2021. 669
- [Yuan *et al.*, 2018] Wentao Yuan, Tejas Khot, David Held, ⁶⁷⁰ Christoph Mertz, and Martial Hebert. Pcn: Point comple- ⁶⁷¹ tion network. *2018 International Conference on 3D Vision* ⁶⁷² *(3DV)*, pages 728–737, 2018. 673
- [Yue *et al.*, 2020] Zhongqi Yue, Hanwang Zhang, Qianru ⁶⁷⁴ Sun, and Xiansheng Hua. Interventional few-shot learn- ⁶⁷⁵ ing. *ArXiv*, abs/2009.13000, 2020. ⁶⁷⁶
- [Zhang *et al.*, 2020a] Dong Zhang, Hanwang Zhang, Jinhui 677 Tang, Xiansheng Hua, and Qianru Sun. Causal interven- ⁶⁷⁸ tion for weakly-supervised semantic segmentation. *ArXiv*, 679 abs/2009.12547, 2020. 680
- [Zhang *et al.*, 2020b] Wenxiao Zhang, Qingan Yan, and 681 Chunxia Xiao. Detail preserved point cloud completion ⁶⁸² via separated feature aggregation. *ArXiv*, abs/2007.02374, ⁶⁸³ 2020. ⁶⁸⁴
- [Zhang *et al.*, 2022] Ziyu Zhang, Yi Yu, and Fei peng Da. ⁶⁸⁵ Partial-to-partial point generation network for point cloud 686 completion. *IEEE Robotics and Automation Letters*, ⁶⁸⁷ 7:11990–11997, 2022. ⁶⁸⁸
- [Zhou *et al.*, 2022] Hao Zhou, Yun Cao, Wenqing Chu, Jun- 689 wei Zhu, Tong Lu, Ying Tai, and Chengjie Wang. Seed- ⁶⁹⁰ former: Patch seeds based point cloud completion with up- ⁶⁹¹ sample transformer. In *European Conference on Computer* 692 *Vision*, 2022. 693