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Abstract

This paper proposes a clustering-based point cloud reg-
istration approach under the constraint of overlap scores
learning by a network. Specifically, our CluReg first in-
troduces a geometric transformer-based network to extract
pointwise features with their associated overlap scores.
Then, the clustering is implemented in the coordinate space
under the constraints of overlap scores to generate clus-
ter centers with associated cluster probabilities, which can
be translated into solving a weighted Wasserstein K-Means
problem. After that, the probabilities are used to calculate
feature centers in feature space. Finally, the transformation
are estimated using both coordinate and feature centers.

1. Introduction
• 23/02 Intro

• 24/02 Related work

• 26/02 method

• 28/02 finish partial exps

• 05/03 finish all experiments and a draft version.

Point cloud registration aims to seek a relative spatial
transformation that aligns two point clouds with each other,
which is a crucial aspect in various applications, includ-
ing but not limited to 3D printing [22], robotics, and au-
tonomous driving [3]. The state-of-art registration pipelines
commonly involve first acquiring local descriptors and de-
tecting overlap regions. These descriptors in the overlap
regions are then matched to identify a set of possible cor-
respondences, which are subsequently used to estimate the
transformation. If any step is unsuccessful, it will result in
inaccurate estimation of transformation, leading to unsatis-
factory registration performance. Especially learning-based
methods have recently dominated recent registration ad-
vances, showing significant improvements in accuracy and
efficiency compared to traditional methods. However, the

presence of noise, repetitive patterns, and varying density
levels challenges the registration accuracy.

all-pair similarity matrix, which may result in a large
combinatorial search space and vulnerability to over-fitting.

OGMM [16] applies a cluster head (MLP) to assign each
point in a point cloud with soft cluster labels, which corpo-
rate the learning overlap scores to calculate the cluster cen-
ters in both coordinate and feature space. The centers are
then used to estimate the transformation based on optimal
transport. To our best knowledge, OGMM is the first work
incorporated with overlap scores to deal with partial overlap
registration. However, it underperforms in registration tasks
when the point cloud contains multiple objects, since using
a network to learn all possible clusters is unreasonable in
multi-objective scenes. Besides, points in different regions
tend to group into the same clusters when low-texture re-
gions or repetitive patterns dominate the field of view. This
issue is especially prominent in indoor environments.

• Using a network to learn all possible clusters is unrea-
sonable in the multi-objective scenes.

• It means all points of the source or target will be as-
signed corresponding points without distinguishing in-
liers and outliers

• the main problem is that they require the inputs to
have distinctive geometric structures to promote sparse
matched points. However, not all regions are distinc-
tive, resulting in a limited number of matches or poor
distributions.

Putting fewer weights on these non-overlapped points
can potentially improve the clustering algorithm.

Contributions

• We provide a soft clustering-based point cloud regis-
tration.

• We provide a conditional clustering method, which can
be solved by translating it into an optimal transport
problem.

1
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2. Related Work

We review correspondence-based registration, including
point-level and distribution-level methods, since our work
follows the line of correspondence-based methods. As un-
supervised learning is a major component in our proposed
learning framework, we also review work on this topic.

Point-Level Methods. Point-level approaches first ex-
tract point-wise features, then establish point-to-point cor-
respondences through feature matching, followed by outlier
rejection and robust estimation of the rigid transformation.
Numerous works, such as FCGF [5] and RGM [9], focus
on extracting discriminative features for geometric corre-
spondences. For the correspondence prediction, DCP [19],
RPMNet [23], and REGTR [24] perform feature matching
by integrating the Sinkhorn algorithm or Transformer [?]
into a network to generate soft correspondences from lo-
cal features. IDAM [14] incorporates both geometric and
distance features into the iterative matching process. To
reject outliers, DGR [4] and 3DRegNet [18] use networks
to estimate the inliers. Predator [11] and PRNet [20] fo-
cus on detecting points in the overlap region and utilizing
their features to generate matches. Keypoint-free meth-
ods [15, 28, 25] first downsample the point clouds into
super-points and then match them by examining whether
their neighborhoods (patch) overlap. Though achieving re-
markable performance, most of these methods rely

Cluster-Level Methods. Cluster-level methods model
the point clouds as clusters, often via the use of GMMs, and
perform alignment either by employing a correlation-based
or an EM-based optimization framework. The correlation-
based methods [12, 26] first build GMM probability distri-
butions for both the source and target point clouds. Then,
the transformation is estimated by minimizing a metric or
divergence between the distributions. However, these meth-
ods lead to nonlinear optimization problems with noncon-
vex constraints [13]. Unlike correlation-based methods, the
EM-based approaches, such as JRMPC [7], CPD [17], and
FilterReg [10], represent the geometry of one point cloud
using a GMM distribution over 3D Euclidean space. The
transformation is then calculated by fitting another point
cloud to the GMM distribution under the maximum like-
lihood estimation (MLE) framework. These methods are
robust to noise and density variation [26]. Most of them uti-
lize robust discrepancies to reduce the influence of outliers
by greedily aligning the largest possible fraction of points
while being tolerant of a small number of outliers. However,
if outliers dominate, the greedy behavior of these methods
easily emphasizes outliers, leading to degraded registration
results [7]. Considering these factors, we formulate regis-
tration in a novel partial cluster matching framework, where

Encoder

Encoder

O
verlap

attention

C
oarse-level

correspondence
prediction

Decoder

Decoder

Point-level
correspondence

prediction

Figure 1. Overview of the proposed method.Please ignore this fig-
ure. NEED TO BE REPLACED

we only seek to partially match the distributions.

3. The Proposed Methods

3.1. Problem formulation

Point cloud registration refers to recover a transforma-
tion T ∈ SE(3) that aligns the source set P = {pi ∈
R3|i = 1, 2, ..., N} to the target set Q = {qj ∈ R3|j =
1, 2, ...,M}. N and M represent the number of points in
P and Q, respectively. T can be calculated using corre-
spondences between P and Q. Our work focuses on cor-
respondence estimation. The pipeline of our CluReg is il-
lustrated in Fig. 1, which is a shared weighted two-stream
encoder-decoder network. Given a point cloud pair P and
Q, the encoder aggregates the raw points into super-points
P̄ and Q′, while jointly learning the associated features F p̄

and Fq′ . The attention block updates the features as F̂ p̄

and F̂q′ , and projects them to super-point overlap scores
µp̄,µq′ . After that, the decoder transforms the features and
super-point overlap scores to per-point features Fp, Fq and
overlap scores µp,µq .

3.2. Feature extraction

Encoder. A KPConv-FPN, which consists of a series of
ResNet-like blocks and stridden convolutions, simultane-
ously down-samples the raw points clouds P and Q into
super-points P̄ = {p̄i ∈ R3|i = 1, 2, ..., N̄} and Q′ =
{q′

j ∈ R3|j = 1, 2, ..., M̄} and extracts associated point-
wise features F p̄ = {fp̄ ∈ Rb|i = 1, 2, ..., N̄} and
Fq′ = {fq′j

∈ Rb|j = 1, 2, ..., M̄}, respectively.

Geometry-aware overlap attention module. The geom-
etry aware overlap attention module, which estimates the
probability (overlap score) of whether a point is in the over-
lapping area, consists of positional encoding, self-attention,
and cross-attention. To better leverage the 3D geometric
structures of point clouds, we introduce positional encod-
ing that assigns intrinsic geometric properties to per-point
features, thus enhancing distinctions among point features

2
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in indistinctive regions. Self-attention models the long-
range dependencies. And cross attention exploits the intra-
relationship within the source and target point clouds, which
models the potential overlap regions.

Specifically, given a superpoint p̄i of P̄ , we first select
k (k = 5 in our experiments) nearest neighbors Ωi of p̄i.
Its associated covariance matrix Σi in the local region is
calculated as

Σi =
∑

xj∈Ωi

ωxj (xj − pi)(xj − pi)
⊤,

ωxj
=

ϕ− ∥xj − pi∥2∑
xj∈Ωi

(ϕ− ∥xj − pi∥2)
,

(1)

where ϕ = max
xj∈Ωi

∥xj − pi∥2. The global centroid of P̄

is p̄c = 1
N̄

∑N̄
i=1 p̄i. The positional encoding fe

p̄ of p̄i is
defined as follow:

fe
p̄i

= φ

cat

 ∥p̄i − p̄c∥2
max

j
∥p̄j − p̄c∥2

, vec (Σi)

 , (2)

where φ is an MLP consisting of a linear layer and a ReLU.
Let F l

p̄ be the intermediate representation for P̄ at layer l
and let F0

p̄ = {fp̄ + fe
p̄}N̄i=1. The multi-attention with four

parallel attention head updates F l
p̄ via

Sp̄ = W l
1F

l
p̄ + bl1,Kx′ = W l

2F
l
x′ + bl2,

Vx′ = W l
3Fx′ + bl3,A = σ

(
S⊤
p̄ Kx′

/√
b
)
,

F l+1
p̄ = F p̄ + gl

([
F l

p̄

∥∥AVx′

])
.

(3)

Here, σ is a softmax function. If x′ = p̄ represents self-
attention, and if x′ = q′ indicates cross-attention. [·∥·] de-
notes concatenation, and gl (·) is a three-layer fully con-
nected network consisting of a linear layer, instance nor-
malization, and a LeakyReLU activation. The same atten-
tion module is also simultaneously performed for all points
in point cloud Q′. A fixed number of layers L = 2 with
different parameters are chained and alternatively aggregate
along the self- and cross- attention. As such, starting from
l = 0, x′ = p̄ if l is even and x′ = q′ if l is odd. The
final outputs of attention module are F̂ p̄ = F3

p for P̄ and
F̂q′ = F3

q′ for Q′. By doing this, the latent features F̂ p̄

has the knowledge of F̂q′ and vice versa. After obtain-
ing the conditioned features F̂ p̄ and F̂q′ , the overlap score
µp̄ ∈ [0, 1] of super-point p̄i , which is proposed to detect
the overlap regions, can be computed by

wij = σ
(
f̂⊤
p̄ f̂q′j

)
, µp̄ = gβ

(
cat

[
f̂p̄,w

⊤
i gα

(
F̂q′

)])
,

where gα (·) : Rb → [0, 1] and gβ (·) : Rb+1 → [0, 1] are
linear layers followed by an instance normalization layer

and a sigmoid activation with different parameters α and β,
respectively. As a shorthand, we denote µp̄ = {µp̄}N̄i=1.
The same operator is applied to calculate µq′ .

Decoder. The decoder, which consists of several KPConv
layers, starts from the super-points P̄ and the concate-
nations of F̂ p̄ and µp̄, and outputs raw point cloud P
with associated features Fp ∈ RN×32 and overlap scores
µp ∈ [0, 1]N . The raw point cloud Q and its associated
features Fq ∈ RM×32 and overlap scores µq ∈ [0, 1]M is
obtained in the same way.

3.3. Conditional clustering registration

The goal of the conditional clustering algorithm is to par-
tition given a set of data X = {x1, · · · ,xK} with associ-
ated weight µ = {µ1, · · · ,µK} into L separated groups,
i.e., L clusters, as C = {c1, · · · , cL} with associated clus-
tering probability matrix γ = {γij} such that the following
cost function is minimized:

min
C,γ

K∑
k=1

L∑
l=1

γkl∥xk − cl∥22,

s.t.,γ⊤1N =
1

J
1J ,γ1J = softmax (µ) .

(4)

The minimization of Eq. (4) can be solved in polynomial
time as a linear program. However, the linear program in-
volves millions of data points and thousands of classes and
traditional algorithms hardly scale to large problems [6].
We address this issue by adopting an efficient version of
the Sinkhorn-Knopp algorithm [6].

The operator performing on point clouds P and Q to get
cluster centers Pc = {pc

i}Lj=1 and Qc = {qc
j}Lj=1, respec-

tively. Then, we calculate the cluster centroids f c
pj

and f c
qj

of the points in each of these J clusters in feature space as
follows,

f c
pj

=

N∑
i=1

γp
ijfpi∑N
k γp

kj

, f c
qj =

M∑
i=1

γq
ijfqj∑M
k γq

kj

. (5)

Extracting point correspondences is to match two smaller
corresponded scale point clouds (Pc,Qc) by solving an op-
timization problem

min
Γ

⟨D,Γ⟩ , (6)

where Γ = [Γ]ij represents an assignment matrix and D =

[D]ij with Dij = ∥ Fc
pi

∥Fc
pi

∥2
−

Fc
qj

∥Fc
qj

∥2
∥2. The picked point

correspondences from (Pc
p,Q

c
q) are defined as

M = {(pc
î
∈ Pc

p, qĵ ∈ Qc
q)
∣∣ĵ = argmax

k
Γî,k}. (7)

Following [2, 25], a variant of RANSAC [8] that is special-
ized to 3D registration takes as an input M to estimate the
transformation.

3
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3.4. Loss Function and Training

Our model is an end-to-end learning framework, using
the ground truth correspondences as supervision. The loss
function L = LC + LF + LCO + LFO is composed of
an coarse-level loss LC for superpoint matching, a point
matching loss LF for point matching, a binary classification
loss LCO for coarse-level overlap scores, and a classifica-
tion loss LFO for fine-level overlap scores.

3.4.1 Coarse-Level Loss

Superpoint Matching Loss. Existing methods [25, 9] usu-
ally formulate superpoint matching as a multilabel classifi-
cation problem and adopt a cross-entropy loss with optimal
transport. Doing this requires unfolding the Sinkhorn layer
to compute gradients in the training stage. To address this
issue, we adopt a circle loss [?] to optimize the superpoint-
wise feature descriptors. As there is not direct supervision
for superpoint matching, we leverage the overlap ratio rji of
points in Gp̄i

that have correspondences in Gq̄j to depict the
matching probability between superpoints p̄i and q̄j . rji is
defined as:

rji =
1

|Gp̄i |
|{p ∈ Gp̄i

∣∣ min
q∈Gq̄j

∥T̂ (p)− q∥2 < rp}|.

where T̂ is the ground-truth transformation and rp is a set
threshold. For circle loss, a pair of superpoints are positive
if their corresponded patches share at least 10% overlap, and
negative if they do not overlap. All other pairs are omitted.
We select the superpoints in P̄ which have at least one posi-
tive superpoint in Q̄ to form a set of anchor superpoints, P̃ .
For each anchor p̃i ∈ P̃ , we denote the set of its positive
superpoints in Q̄ as N p̃i

p , and the set of its negative patches
as N p̃i

n . The superpoint matching loss (circle loss) LP̄
C on

P̄ is then defined as:

LP̄
C =

1

|P̃ |

∑
p̃i∈P̄

log [1 + ζi] ,

ζi =
∑

q̃k∈N p̃i
p

er
k
i β

ik
p (dk

i −∆p) ·
∑

q̃l∈N p̃i
n

eβ
il
n (∆n−dl

i),
(8)

where dki = Df (fp̃i
,fq̃k) is the distance in the feature

space. The weights βik
p = γdki and βil

n = γ(2.0−dli) are de-
termined individually for each positive and negative exam-
ple, using the empirical margins ∆p = 0.1 and ∆n = 1.4
with a learned scale factor γ ≥ 1. The circle loss reweights
the loss values on Npi based on the overlap ratio so that
the patch pairs with higher overlap are given more impor-
tance. The same goes for the loss LQ̄

C on Q̄. The overall
superpoint matching loss is

LC =
1

2
(LP̄

C + LQ̄
C ). (9)

Coarse-Level Overlap Loss. We use the ratio of points in
Gp̄i that are visible in Q to depict the ground-truth overlap
scores µ̄p̄i

of the superpoint p̄i. It is calculated by

µ̄p̄i =
1

|Gp̄i |
|{p ∈ Gp̄i

∣∣min
q∈Q

∥T̂ (p)− q∥2 < ro}|, (10)

with overlap threshold. If µ̄p̄i is close to 1, p̄i tends to locate
in the overlap regions. µ̄q̄j is calculated in the same way.
The predicted overlap scores for P̄ are thus supervised us-
ing the binary cross entropy loss, i.e.,

LP̄ = − 1

N̄

∑
i

µ̄p̄i
logµp̄i

+ (1− µ̄p̄i
) log (1− µp̄i

) .

(11)
The loss LQ̄ for Q̄ is calculated in the same way. The loss
for coarse-level overlap scores is

LCO =
1

2
(LP̄ + LQ̄) .

3.4.2 Fine-Level Loss

Point Matching Loss. We apply circle loss again to super-
vise the point matching. Consider a pair of matched super-
points p̄i and q̄j with associated patches Gp̄i and Gq̄j , we
first extract a set of anchor points G̃p̄i

⊆ Gp̄i
satisfying that

each gk
p̄i

∈ G̃p̄i has at least one (possibly multiple) corre-
spondence in Gq̄j , i.e.,

G̃p̄i = {gk
p̄i

∈ G̃p̄i
| min
gl
q̄j

∈Gq̄j

∥T̂
(
gk
p̄i

)
− gl

q̄j∥2 < rp}.

For each anchor gk
p̄i

∈ G̃p̄i
, we denote the set of its positive

points in Gq̄j as N
gk
p̄i

p . All points of Q outside a (larger)

radios rn form the set of its negative patches as N
gk
p̄i

n . The
fine-level matching loss LP

F on P is calculated as:

LP
F =

1

|P̃ |

∑
p̃i∈P̄

1

|G̃p̄i
|

∑
gs
p̄i

∈G̃p̄i

log [1 + ξs] ,

ξs =
∑

gk
q̄j

∈N
gs
p̄i

p

er
k
sβ

sk
p (dk

s−∆p) ·
∑

gl
q̄j

∈N
gs
p̄i

n

eβ
sl
n (∆n−dl

s),

(12)
where dks = Df (fgs

p̄i
,fgs

q̄j
) is the distance in the feature

space. The weights βsk
p = ωdks and βsl

n = ω(2.0 − dls)
are determined individually for each positive and negative
example with a learned scale factor ω ≥ 1. ∆p = 0.1 and
∆n = 1.4. The same goes for the loss LQ

F on Q. The
overall superpoint matching loss writes as

LF =
1

2
(LP

F + LQ
F ). (13)

4
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Fine-Level Overlap Loss. The overlap score loss is
LFO = − 1

2

(
1

|P̄|
∑

p̄i
Lp̄i

+ 1
|Q̄|

∑
q̄j
Lq̄j

)
with

Lp̄i
=

1

|G̃p̄i
|

∑
gk
p̄i

(
µ̄gk

p̄i
logµgk

p̄i
+
(
1− µ̄gk

p̄i

)
log

(
1− µgk

p̄i

))
.

The ground-truth label µ̄gk
p̄i

of the point gk
p̄i

∈ G̃p̄i
is de-

fined as

µ̄gk
p̄i

=

{
1,

(
minqj∈Q ∥T̂ (gk

p̄i
)− qj∥

)
< ro

0, otherwise
, (14)

where Lq̄j is calculated in the same way.

4. Experiments
We conduct extensive experiments to evaluate the per-

formance of our method on the real datasets 3DMatch [27]
and 3DLoMatch [11], as well as on the synthetic datasets
ModelNet [21] and ModelLoNet [11].

4.1. Implementation Details

Our method is implemented in PyTorch and was trained
on one Quadro GV100 GPU (32G) and two Intel(R)
Xeon(R) Gold 6226 CPUs. We used the AdamW optimizer
with an initial learning rate of 1e−4 and a weight decay of
1e−4. We adopted the same encoder and decoder archi-
tectures used in [?]. For the 3DMatch dataset, we trained
for 200 epochs with a batch size of 1, halving the learning
rate every 70 epochs. We trained on the ModelNet for 400
epochs with a batch size of 1, halving the learning rate every
100 epochs. On 3DMatch and 3DLoMatch, we set J=128
with truncated patch size K=32. On ModelNet and Model-
LoNet, we set J=32 with truncated patch size K=32. The
cluster head MLP consists of 3 fully connected layers. Each
layer is composed of a linear layer followed by batch nor-
malization. The hidden layer and the final linear layer out-
put dimension are 512 and 256, respectively. Except for the
final layer, each layer has a LeakyReLU activation.

4.2. Evaluation on 3DMatch and 3DLoMatch

Datasets and Metrics. 3DMatch [27] and 3DLoMatch [11]
are two widely used indoor datasets with more than 30%
and 10%∼30% partially overlapping scene pairs, respec-
tively. 3DMatch contains 62 scenes, from which we use
46 for training, 8 for validation, and 8 for testing. The test
set contains 1,623 partially overlapping point cloud frag-
ments and their corresponding transformation matrices. We
used training data preprocessed by [11] and evaluated with
both the 3DMatch and 3DLoMatch protocols. Each input
point cloud contains an average of about 20,000 points. We
performed training data augmentation by applying small

Table 1. Results on both 3DMatch and 3DLoMatch datasets. The
best results for each criterion are labeled in bold, and the best re-
sults of unsupervised methods are underlined.

3DMatch 3DLoMatch
Method RR↑ RRE ↓ RTE ↓ RR ↑ RRE ↓ RTE ↓

Point-level Methods

FCGF[5] 85.1% 1.949 0.066 40.1% 3.147 0.100
D3Feat[1] 81.6% 2.161 0.067 37.2% 3.361 0.103

OMNet [?] 35.9% 4.166 0.105 8.4% 7.299 0.151
DGR [4] 85.3% 2.103 0.067 48.7% 3.954 0.113

Predator1K [11] 89.0% 2.062 0.068 62.4% 3.159 0.096
CoFiNet[25] 89.7% 2.147 0.067 67.2% 3.271 0.090
GeoTrans [?] 92.0% 1.808 0.063 74.0% 2.934 0.089
REGTR [24] 92.0% 1.567 0.049 64.8% 2.827 0.077

Cluster-level Methods

CluReg (Ours) 91.4% 1.642 0.064 64.3% 2.951 0.086

rigid perturbations, jittering the point locations, and shuf-
fling points. Following Predator [11], we evaluated the Rel-
ative Rotation Errors (RRE) and Relative Translation Errors
(RTE) that measure the accuracy of successful registrations.
We also assessed Registration Recall (RR), the fraction of
point cloud pairs whose transformation error is smaller than
a threshold (i.e., 0.2m).
Baselines. We chose supervised state-of-the-art (SOTA)
methods: FCGF [5], D3Feat [1], SpinNet [?], Predator [11],
REGTR [24], CoFiNet [25], and GeoTransformer[?], as
well as unsupervised PPFFoldNet [?] and SGP [?] as our
baselines.
Registration Results. The results of various methods are
shown in Table 1, where the best performance is highlighted
in bold while the best-unsupervised results are marked with
an underline. For both 3DMatch and 3DLoMatch, our
method outperforms all unsupervised methods and achieves
the lowest average rotation (RRE) and translation (RTE) er-
rors across scenes. Our method also achieves the highest
average registration recall, which reflects the final perfor-
mance on point cloud registration (91.4% on 3DMatch and
64.3% on 3DLoMatch). Specifically, CluReg largely ex-
ceeds the previous winner and our closest competitor, SGP,
(85.5% RR on 3DMatch) by about 5.9% and (39.4% RR on
3DLoMatch) by 24.9%. Interestingly, our method also ex-
ceeds some supervised methods, e.g. FCGF, D3Feat, DGR,
and Predator1K, showing its efficacy in both high- and low-
overlap scenarios. Even compared with recent supervised
SOTA methods, our method achieves competitive results.

4.3. Generalization on Cross-source Dataset

The generalization ability of learning-based registration
algorithms is highly required when the point cloud is ac-
quired from different sensors. To validate the generalizabil-
ity of our model, we experiment on our own Cross Source
Dataset (3DCSR) [?]. 3DCSR is a challenging dataset for
registration due to a mixture of noise, outliers, density dif-
ference, partial overlap, and scale variation.
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4.3.1 3DCSR

This dataset contains two folders: Kinect Lidar and Kinect
SFM. Kinect lidar contains 19 scenes from both the Kinect
and Lidar sensors, where each scene is cropped into dif-
ferent parts. Kinect SFM consists of 2 scenes from both
Kinect and RGB sensors. The RGB images have already
been constructed into a point cloud by using the software
VSFM. We use the model trained on 3DMatch since the
cross-source dataset is captured in an indoor environment.
RR is the percentage of successful alignment whose rota-
tion error and translation error are below set thresholds (i.e.,
RRE < 15◦ and RTE < 6m).

Table 2. Registration results on Cross Source Datasets. Best per-
formance is highlighted in bold.

Method Estimator RRE (◦) ↓ RTE (cm) ↓ RR(%) ↑
FCGF [5] RANSAC 7.47 0.21 49.6

D3Feat [1] RANSAC 6.41 0.26 52.0
SpinNet [?] RANSAC 6.56 0.24 53.5

Predator [11] RANSAC 6.26 0.27 54.6
CoFiNet [25] RANSAC 5.76 0.26 57.3
GeoTrans [?] RANSAC 5.60 0.24 60.2

CluReg (Ours) RANSAC 5.49 0.21 63.4

4.3.2 Registration Results

We use FCGF [5], D3Feat [1], SpinNet [?], Predator [11],
CoFiNet [25], and GeoTransformer [?], as the baselines.
Table 2 shows that our method obtains the highest ac-
curacies in generalizing the registration ability to real-
world cross-source dataset. Specifically, it outperforms the
second-best, GeoTransformer, by more than 3.2% in terms
of registration recall (63.4% vs 60.2%). However, the recall
is not high enough, showing that registration challenges on
3DCSR remain.

4.4. Ablation Study

To fully understand CluReg, we conduct an ablation
study on 3DMatch and 3DLoMatch to investigate the con-
tribution of each part. First, we replace the overlap scores
with a uniform distribution, i.e., treating the points in over-
lap and non-overlap regions equally, to evaluate the ef-
fectiveness of overlap scores. As shown in Table 3, on
3DMatch, the learned overlap scores improve the perfor-
mance by nearly 2.0% (92.9% vs. 90.9%) RR, 0.7% (98.5%
vs. 97.8%) FMR, and 7.8% (86.1% vs. 68.3%) IR, respec-
tively. Structure matching can boost RR by 1.1% (92.9%
vs. 91.8%), FMR by 0.5% (98.5% vs. 98.0%) and IR by
10.2% (86.1% vs. 75.9%), respectively. It also indicates
that CluReg benefits from the overlap scores and structure
matching. Table 3 also shows that the positional encoding
can improve the performance in terms of RR, FMR and IR.
On 3DLoMatch, the same results can be concluded.

Table 3. Ablation study of individual modules, tested with #Sam-
ples=1000. self and cross indicate self- and cross-attention.

3DMatch 3DLoMatch
self cross RR FMR IR RR FMR IR
✓ 92.9 98.5 86.1 79.7 89.7 55.1
✓ 91.8 98.0 75.9 74.6 88.9 46.4
✓ ✓ 90.9 97.8 68.3 67.2

coarse fine RR FMR IR RR FMR IR
✓ 92.9 98.5 86.1 79.7 89.7 55.1
✓ 91.8 98.0 75.9 74.6 88.9 46.4
✓ ✓ 90.9 97.8 68.3 67.2
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