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Outline

« Large-scale and outdoor 3D neural reconstruction

« 3D editing with neural radiance fields

e Pose estimation for 3D neural reconstruction



Large-scale and Outdoor 3D Neural
Reconstruction

“Scalability”



Challenges for applying NeRF to large-scale scenes

Can we directly apply NeRF to
outdoor and large-scale scenes?

NO!



Challenges for applying NeRF to large-scale scenes

5D Input Output Volume Rendering
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Unbounded scenes
Dynamic objects
Multi-scale images

Limited network capabilities

X X X X



NeRF+ +

» Goal:
» Address a parametrization issue involved in applying NeRF to 360° captures of

objects within large-scale, unbounded 3D scenes.
» Solution:
» Samples within a unit sphere enclosing all camera poses to render its
foreground component and uses a different methodology for the background
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Zhang, Kai, et al. "Nerf++: Analyzing and improving neural radiance fields." arXiv preprint arXiv:2010.07492 (2020).




NeRF in the Wild

m———— 1
» Goal: : gla) 1
. : |
appearance B
» Synthesizing novel views of complex F5-2c 7
scenes using only unstructured - - 5~
collections of in-the-wild photographs ~ yowrd RGB
— | color 4
8
o o | &
» Solution: L L, g density
> Model per-in === > B
. . - dainty —
In a low-dime -T-?-‘—,i | W 1
. fe> B —| RGB | =
> Unsupervise T s color | 8
w
. ] o t_p
content into ‘ —>| i ?..:
~— I

components

(a) Photos



NeRF in the Wild
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Mip-NeRF

» Goal:
» Solve the blurred or aliased issue when
training or testing images observe scene

content at different resolutions

. p—

» Solution:
» Replace ray tracing with cone tracil

» Replace positional encoding with
Integrated positional encoding (IPE

Full Resolut

1/8 Resolution

0.976 |
(a) NeRF, Single  (b) NeRE, Multi (c) Mip-NeRF (d) Ground Truth




BungeeNeRF (CityNeRF)

(a) Multi-scale Training Data (b) Progressive Growing Model @ =~~~ """ ~"~-~"~---~"----------=-=--= S (c) Rendering with Residuals
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» Goal:
» Pack extreme multi-scale city scenes into a unified model
» Solution:
» Adopt a progressive neural radiance field
» Grow model with residual block structure + Inclusive multi-level data supervision



BungeeNeRF (CityNeRF)




Block-NeRF

» Goal:
» Enable neural radiance fields for large-
scale environments
» Solution:
» Dividing large environments into
Individually trained Block-NeRFs
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Block-NeRF

» Goal:
» Enable neural radiance fields for large-
scale environments

» Solution:
» Dividing large environments into
Individually trained Block-NeRFs
» Culling Block-NeRFs using the visibility
network that predicts whether a point in
space was visible in the training views

Target View

X) «—

Block-NeRF Origin
Block-NeRF Training Radius

Discarded

Visibility Prediction

Color Prediction



Block-NeRF




Mega-NeRF

» Goal:

» Train large-scale 3D scenes efficiently 1
: ->mum-
» Solution: ;r:g: Data Partitioning
» Exploit spatial locality and train the model

subweights in a fully parallelizable manner



Take-home Message

X X X X

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
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Dynamic objects g Unsupervised decomposition
Multi-scale images —) Advance tracing and learning strategy

Limited network capabilities — Divide-and-conquer



3D Editing with Neural Radiance Fields

“Editing”



What does CG creation needs?

73 AUTODESK

2 P * taps
P - ok < voutined v s
3 p Tl = 1
Interactively edit light group AOVs without restarting your render using a new Arnold Light Mixer imager = ;

Editable Scene Rendering

Light Editing Scene Editing



Challenges for Editing with NeRF
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x Implicit representation
X The scene is represented as a whole
X Everything is entangled within a network
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Geometry Editing

Naive Solution: Decompose the implicit field into an explicit representation
for flexible user editing

Challenge: Propagate deformation from the explicit representation back to
implicit field

Key Idea: Out-of-the-box mesh-based deformation algorithm; discretize
deformation into 3D space
» Nerf-Editing: use tetrahedralization method to discretize deformation
» Deforming Radiance Fields with Cages: use coarse bounding cages
generation to discretize deformation



NeRF-Editing
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» EXxplicit mesh as the editing interface

Results

» Tetrahedralization of explicit mesh to transfer deformation to discrete

volume (tetrahedron)
» Tetrahedra-based interpolation to deform radiance field



NeRF-Editing

More results




Deforming Radiance Fields with Cages

Radiance field = Cage generation Cage manipulation Deformed scene Original scene
optimization

» A cage (coarse triangular mesh) as the editing interface with off-the-shelf
coarse bounding cages generation
» Cage-based interpolation to deform radiance field



Deforming Radiance Fields with Cages

Cage
Movement

NVS




Texture Editing

Naive Solution: Fine-tune the color head of Nerf

Challenge: 2D texture editing lacking of view-consistency or a flexible
representation for 3D texture editing

Key ldea: Disentangle geometry and texture; a flexible texture optimization
strategy

» NeuTex: texture mapping network to represent texture

» Editing Conditional Radiance Fields: radiance field conditioned by shape

and texture code
» NeuMesh: learn local latent features attached to raw mesh vertices



NeuTex
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» Disentangle geometry as a continuous 3D volume E, and appearance as
a continuous 2D texture map F;,,

7)

» Introduce a 3D-to-2D texture mapping network E,,, into volumetric
representations.

» Constrain this texture mapping using an additional inverse mapping
network E;! and a novel cycle consistency loss



NeuTex

View
Synthesis

Appearance
Editing




Editing Conditional Radiance Fields

Updated during shape editing
A
A. Color editing
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» Conditional radiance field including a shape branch that is shared across
object instances
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Updated during color editing

» Hybrid network update strategy balancing efficiency and accuracy: update

Fryuse & Fyens during shape editing and update Z ©) & E,.,4 for color editing



Editing Conditional Radiance Fields

Geometry Edit g 3 Q
Texture Edit
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NeuMesh
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» The mesh-based neural implicit field whose vertex possesses a
geometry and texture code

» Support various editing functionalities: geometry deformation, texture
swapping, texture filling, texture painting



NeuMesh: geometry deformation

Synchronized Field

User Geometry Edit Deformation

Rendering Result

» Simply deform the corresponding mesh to synchronously take effect on
the implicit field, which is aligned to the mesh surface.



NeuMesh: texture swapping

Original
Object

Swapping Area

(from red to yellow)

» Transfer the texture from the red area to the yellow area according to
user-selected vertices by swapping texture code in 3D space



NeuMesh: texture filling

Original
Object

» Transfer painting from a single 2D image to the neural implicit field with
proposed spatial-aware optimization



NeuMesh: Hybird Editing

\Geometry Editing

Texture Swapping

Painting




New Editing Functionality: Text

ClipNeRF Decomposing NeRF for Editing via Feature
Field Distillation
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» Take a CLIP embedding as editing » Distill feature field from CLIP-variant
iInput with two code mappers and model with a vanilla NeRF

update the conditional Nerf to reflect
the targeted editing.




New Editing Functionality: Text

ClipNeRF Decomposing NeRF for Editing via Feature
Field Distillation

Sofa chair

SUV
5\ Yellow car -~ Blue chair

raw rendering white flower rainbow flower




Light Editing

Observation: NeRF mixes the environment light effect, BRDF into color
field

Challenge: illumination estimation, BRDF estimation, light condition of data

Key ldea: disentangle geometry, BRDF, environment light effect
» Light Estimation: spherical gaussian(NeRD), pre-baked visibility
network+ an HDR light probe representation(NeRFactor)
» BRDF estimation: implicit BRDF network(NeRV) , knowledge BRDF
encoder/decoder (NeRFactor, NeRD)



Naive Ours
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» Assume position of light source is known and use visibility network to
memory the visibility of environment light

» Bounce ray once to collect the indirect light = the direct light of bounced
sampled

» Volume rendering with light visibility, direct light, indirect light and BRDF
(3D diffuse albedo a and 1D roughness y from reflectance network)

One-Bounce
Indirect




NeRV

Relighting and View
Synthesis

Material Editing




NeRFactor
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NeRFactor

» Distill light visibility from geometry of pre-trained Nerf to model shadow
» BRDF estimation from a data-driven prior

» An HDR light probe representation to represent detailed high-frequency
lighting



NeRFactor

BRDF Albedo

Relighting and View Synthesis Material Editing
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» Input data are collected under various light condition

» Sampling network as coarse model to learn the coarse geometry under
various light condition

» Decomposition network as fine model to decompose fine geometry, direct
color, BRDF of object
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NeRD

Ground Truth NeRF



Scene Editing

Nawe Solution: decompose scene into object level

Challenge: disentanglement of foreground and background

Key Idea: exploit explicit supervision or implicit prior to segment foreground
» Object segmentation: Object NeRF
» Implicit knowledge: UORF
» Depth: ST NeRF



Object NeRF
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» Atwo-pathway architecture: scene branch (encodes the scene geometry &
appearance), object branch(conditioned on learnable object activation
codes)

» A scene-guided training strategy to solve the 3D space ambiguity in the
occluded regions and learn sharp boundaries for each object



Object NeRF
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uORF

I. Object-centric latent inference | II. Object radiance fields III. Re-composing and re-rendering [ l:Learnable

Training on multiple scenes

, Compose LOSS )
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Attention weights Input image

» Foreground and background decomposed design with a slot-based formulation
» Background-aware slot attention for sampling and binding to separately
models objects and environment to better capture the compositional structure

of 3D scenes.
» Each object slot is bound to an object region via an attention module



Input image Reconstruction  Object removal ~ Object insertion ~ Rearrangement

Background and object radiance ficlds



ST-NeRF

Trajectory Prediction

______

Scene Sensing

Layered ST-NeRFs

Neural Editing

}

i

» A neural layered representation enabled by the disentanglement of location,

deformation as well as the appearance of all the dynamic entities

Coarse depth

E

Low resolution mask

Refined mask

> A layer-wise 4D label map tracking to disentangle the spatial information explicitly

and a continuous deform module to disentangle the temporal motion implicitly
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Take-home Message

5D Input Output Volume Rendering
Position + Direction [l[]l] Color + Density Rendering Loss
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x  Implicit representation ) Taking explicit representation as a proxy
x The scene is represented as a whole == | earn local features

x  Everything Is entangled within the network mm) Disentangle components



Pose estimation for 3D neural reconstruction

“Pose”



Why do we need camera pose estimation?

Images + accurate camera poses 3D scene representation

X Accurate camera poses are necessary
x  Offline process



INeRF

Key Idea: Inverting an optimized neural radiance field for pose estimation.
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INeRF

Key Observation: Sampling rays play a role in the optimization procedure.

Interest Point  Interest Region

Yen-Chen, Lin, et al. "inerf: Inverting neural radiance fields for pose estimation." IROS 2021



INeRF




INeRF

Application: Self-Supervising NeRF with INeRF
 Train a NeRF given a set of training RGB images with known camera poses;

 Use INeRF to take in additional unknown-pose observed images and solve for estimated
poses ;

 Use the self-supervised pose labels to add unknown-pose observed images into the
training set.

Fern Ground Truth 100% 50%+iNeRF 50% 25%+1NeRF 25%



BARF

Key ldea: Jointly optimizing for registration and reconstruction.

rrrrr

u p’L) H2

,,,,, =1 u ren

Naively backprop. does not work!



BARF

Key Observation:

o
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input 3D 3 7| o ) &2 O ¢ color (RGB)
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x detrimental to gradient-based registration!!



BARF

Key Solution: Making it coarse-to-fine!

fi(x)
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X gets stuck in suboptimal solutions
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v smooth signals -> coherent updates

Resolve large pose misalignment &
coarse scene representation

Gradually activate higher-
frequency components in
positional encoding

Refine granular pose misalignment &
high-fidelity scene representation



IMAP

Key Idea: Use a multilayer perceptron (MLP) to serve as the only scene
representation in a real-time SLAM system for a handheld RGB-D camera.

RGB-D Tracked
Image Pose

Tracking
Process

Adq Keyframe Set
Keyframe

Implicit
Network

Mapping
Process

Sucar, Edgar, et al. "iMAP: Implicit mapping and positioning in real-time." ICCV 2021.



IMAP

Key Idea: Use a multilayer perceptron (MLP) to serve as the only scene
representation in a real-time SLAM system for a handheld RGB-D camera.

Joint Optimisation

Camera
Poses

Implicit
Network

Rendered poses update: {VT},

Images

Geometric and
Photometric Losses

network update: V6

Sucar, Edgar, et al. "iMAP: Implicit mapping and positioning in real-time." ICCV 2021.



IMAP

Challenges: How to make it efficient enough for the real-time application?
Solution: Active sampling

Image Active Sampling Keyframe Active Sampling
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IMAP

Sucar, Edgar, et al. "iMAP: Implicit mapping and positioning in real-time." ICCV 2021.



IMAP

Problems:

A single MLP

mm Fail when scaling up to larger scenes Predicted Poses

GT Poses

mm Global update - Catastrophic forgetting

mm  Slow convergence



NICE-SLAM

Feature grids + tiny MLPs

+ Applicable to large-scale scenes
+ Local update - No forgetting problem

+ Fast convergence

Predicted Poses

GT Poses




NICE-SLAM

Key ldea: Hierarchical Feature Grid + Coarse-to-Fine Strategy + Shape Prior

Input Depth
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Take-home Message

Images + accurate camera poses 3D scene representation

x Accurate camera poses are necessary s Joint optimization
x Offline process mmp  Advanced sampling + scalable representation



Thank you



