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CPG3D : Cross-modal Priors Guide the 3D Object
Reconstruction

Weizhi Nie, Chuanqi Jiao, Rihao Chang, Lei Qu, An-An Liu Senior Member, IEEE

Abstract—Three-dimensional reconstruction is a multimedia
technology widely used in computer-aided modeling and 3D
animation. Nevertheless, it is still hard for reconstruction methods
to overcome the 3D geometry missing and the object occlusion in
the single-view images. In this paper, we propose a novel method
(CPG3D) for reconstructing high-quality 3D shapes from a single
image under the guidance of prior knowledge. Using the single-
view image as the query, prior knowledge is collected from public
3D datasets, which can compensate for missing 3D geometries
and assist the 3D reconstruction network to high fidelity results.
Our method consists of three parts: 1) Cross-modal 3D shape
retrieval module: This part retrieves related 3D shapes based on
2D images. Here, we apply the pre-trained model to guarantee
the correlation between the retrieved 3D shape and the input
image. 2) Multimodal information fusion module: We propose
a multimodal attention mechanism to handle the information
fusing of 2D visual and 3D structural information; 3) Three-
dimensional reconstruction module: We propose a novel encoder-
decoder network for 3D shape reconstruction. Specifically, we
employ the skip connection operation to link the target image’s
visual information with the 3D model’s structural information to
enhance the prediction of 3D details. During training, we employ
two carefully designed loss functions to lead the multimodal
learning to obtain proper modal features. On the ShapeNet and
Pix3D datasets, the final experimental results reveal that our
method notably increases reconstruction quality and outperforms
SOTA methods.

Index Terms—3D model reconstruction, Multimodal learning,
Cross-modal retrieval.

I. INTRODUCTION

Three-dimensional object reconstruction from a single-view
RGB image is a widely researched multimedia task. It has
been already applied in computer-assisted modeling [1], [2],
3D animation [3], [4] and robot localization [5], [6]. Unlike
humans, who can easily infer the 3D shape of an object
from a single image due to previously learned knowledge and
an innate ability for visual understanding, computer vision
systems are unable to directly reconstruct the 3D shapes from
a single image because of the lack of structural information.
Hence, the assistance of shape priors and the ability of shape
reasoning play an indispensable and important role in 3D
object reconstruction.

Lots of single-view 3D object reconstruction methods [7]–
[9] rely on the massive training on large-scale datasets, which
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maps 2D image features into the 3D shape feature space
through convolutional neural networks. However, this learning
manner constrains their reconstruction ability due to the infor-
mation loss in the single-view image. Although these methods
have achieved some promising results on the views of 3D ob-
jects with clean backgrounds, they still fail to produce credible
reconstruction results on views with complex backdrops, such
as occlusion and truncation. This condition presents a new
challenge to single-view 3D object reconstruction.

A. Motivation

Prior knowledge [10]–[13] is an effective form to compen-
sate for the 3D geometry loss, which provides the network
with multimodal input for a comprehensive understanding of
the target object. Consequently, the pipeline of prior-guided
3D reconstruction can be redesigned as: given a single-view
image, computer vision systems should be able to automati-
cally associate the shape prior knowledge and utilize this prior
knowledge to guide the shape reconstruction. Thus, in this
paper, single-view reconstruction is divided into two tasks.
1) Obtaining the prior knowledge from the target image:
Humans proactively learn the knowledge and memorize it
as priors, while computers similarly obtain their priors from
memory units. Therefore, this task constructs prior memories
and retrieves the desired knowledge. 2) Reconstructing high-
quality 3D shapes under the guidance of prior knowledge:
Humans can infer the 3D structure of objects depicted in
images based solely on prior knowledge. In a similar ap-
proach, computers should combine previously acquired priors
with image data and infer the desired shape in a learnable
manner. Consequently, this paper focuses on efficient methods
of information integration and shape reconstruction from the
integrated features.

Based on previous analyses, we propose a novel 3D object
reconstruction method that recovers the desired shape from a
combined multimodal representation. First, to obtain appropri-
ate shape priors, we utilize a cross-domain retrieval method
that bridges the gap between images and 3D shapes. Given the
input image, this method returns 3D shapes describing struc-
turally homologous objects. For instance, when the network
receives an image of a boss chair, the retrieval method will
provide 3D chairs with structures such as large backrests and
wheeled five-star feet. Second, we need to utilize the retrieved
3D shapes to make up for the missing structural information
of the 2D target image. We first extract the features of images
and 3D shapes under the supervision of carefully designed
domain-specific loss functions, which learn the image features
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on the individual structures and the shape features on the
overall structures, respectively. Then, we adopted the cross
attention mechanism to explore the potential relation between
the image feature and shape prior feature, based on which they
are further combined into a highly integrated feature for 3D
reconstruction. Finally, we expected the integrated feature to
carry the overall homologous characteristics from priors and
the differentiated individual characteristics from the single-
view image. Thus, we adopted the 3D shape decoder to recover
the 3D structural details from the integrated feature. Note that,
to meet the previously desired reconstruction effect, the whole
training process is under the supervision of the loss function
that examines the reconstruction performance in 3D space.

B. Contributions

The contributions of this paper are as follows:
• We propose a novel approach for reconstructing high-

quality 3D shapes based on a given single-view image and
its retrieved 3D prior knowledge. Shape priors can effec-
tively compensate for the unseen structures in single-view
images and optimize the performance of reconstruction;

• We propose a novel multimodal knowledge fusion net-
work based on the cross attention mechanism, which can
hierarchically fuse the image’s visual information with
relevant 3D shape structural information;

• We propose a three-dimensional reconstruction network
assisted by the skip connections from image features.
Besides, we validate the performance of the proposed
method on the ShapeNet and Pix3D datasets. Several
ablation studies are conducted to evaluate the effective-
ness of each module. All experiments demonstrated the
superiority and reasonableness of our network design.

The remainder of this article is organized as follows. Section
II presents related works on 3D shape reconstruction and
cross-modal 3D shape retrieval. Section III provides the details
of our approach. The corresponding experimental results and
analysis are described in Section IV. Finally, we discuss the
contributions and conclude this paper in Section V.

II. RELATED WORK

A. Three-Dimensional Object Reconstruction

Due to the wide application prospects of 3D vision, the
reconstruction of 3D objects from a single-view image has
attracted increasing attention. The main concern of single-
view reconstruction is how to recover the missing geometric
information of the input image. Traditional methods dig deep
into the potential 3D representation of the input image, such
as shading [14]–[17], occlusion [18], texture [19], [20] and
vanishing points [21].

With the rapid development of deep learning and large-scale
datasets, deep neural networks have shown their superiority.
The early exploration, 3D-R2N2 [7], used a convolutional
neural network with gated recurrent units to recover the full
3D structure of an object from single or several images.
Unlike previous 3D reconstruction methods that rely on feature
matching, 3D-R2N2 directly learns the mapping relationship

from 2D to 3D space. However, 3D-R2N2 remains compu-
tationally inefficient. Inspired by the octree structure [22]–
[24], researchers of HSP [25], OGN [26] and O-CNN [27]
optimized the voxel representation by the voxel-level occu-
pancy frequency and facilitated higher resolution prediction.
However, it is still difficult for these methods to generate high-
quality 3D shapes. Therefore, some researchers utilized the
efficient 3D representations of the polygon mesh [28]–[33] and
deep implicit representation [34]–[38]. Polygon mesh repre-
sents the required shape with vertexes and faces, while implicit
representation depicts the shape with a function between the
3D point position and the explicit or implicit distance from
the point to the object surface. These methods can generate
shapes with less redundant information. Besides, although the
multi-view reconstruction task has long been dedicated to the
combination of and consistency between different views, some
methods [9], [39], [40] still have decent performance on single-
view reconstruction tasks.

The key point of single-view reconstruction is the prior
knowledge that compensates for the missing geometric in-
formation. Pontes et al. [31] represented the desired shape
as a weighted combination of parameterized shape features.
Yang et al. [11] first utilized memory networks [?], [?], [41],
[42] to supplement 3D priors to 2D images and generate
volumetric shapes. They introduced the LSTM-based shape
encoder to extract shape priors from the memory network for
reconstruction. Siddique et al. [12] leveraged the symmetries
of 3D shapes as the prior knowledge. They considered that
if the neighbors of an object partial are all symmetric, this
partial is strongly judged as symmetric, and thus, the predicted
shape can be optimized. Gao [13] et al. employed the domain
adaptive learning for the alignment between 3D priors and 2D
input images. They explored the multimodal correspondence
between priors and input images, and further, they designed
to divide the predicted shape according to the voxel grids
and locally optimize the predicted shape. These previous
works have verified the effectiveness of shape priors in 3D
reconstruction. Thus, we employ cross-domain retrieval to
precisely obtain desired 3D priors and design an efficient
network to learn this guidance.

B. Image-based 3D Object Retrieval

For input images, the compensation of the 3D structure
information involves the challenge of cross-domain learning.
Inspired by the prior-guided method of 3D reconstruction,
cross-domain retrieval appears to be a more effective alterna-
tive to the acquisition of priors. Early methods [43]–[45] relied
on a linear classifier to match the related shapes. However,
the performance of these simple structures was unsatisfactory.
Therefore, metric learning was introduced in many works to
reinforce the performance of cross-domain retrieval. Lee et
al. [46] proposed cross-view convolution to sequentially learn
multi-view features for 3D shape representations. Moreover,
they proposed a cross-domain triplet neural network to incor-
porate metric learning with cross-domain retrieval tasks. Mu
et al. [47] described each input point as a point in Euclidean
space and then mapped each 3D shape to a Riemannian
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Fig. 1. The framework includes three parts: 1) Cross-modal prior knowledge extraction: input single-view image is used to retrieve the related 3D shape priors.
2) Multimodal information learning: the loss function L2D and L3D is utilized to supervise the feature extraction of the input image and shape priors, and
these extracted features are further fused by the cross-modal attention modules. 3) Three-dimensional model reconstruction: The decoder is used to recover
the 3D shape, and the refiner is adopted to optimize this reconstructed shape in detail.

manifold. To reduce the gap between the image and the 3D
shape in different spaces, they bridged these two spaces to a
shared high-dimensional Hilbert space, which greatly facili-
tated feature matching. Hence, cross-domain metric learning
can effectively address the problem of complementing the 3D
structure priors for the input image. More details about our
network will be introduced in the following sections.

III. APPROACH

In this section, we will detail our approach. Fig.1 shows the
framework of our approach, which is divided into three parts.

1) Cross-modal prior knowledge extraction: Given the target
image, a cross-modal retrieval approach is adopted to extract
the shape prior knowledge. To guarantee the correlation of
retrieved results with the target image, we apply a pre-trained
CLN model [48], which will be introduced in the following
subsection. Finally, we select the top N retrieved results as the
3D prior knowledge to compensate for the missing structural
information.

2) Multimodal information learning: On the one hand, for
each modality, the network extracts the individual 3D infor-
mation from the input image and the common 3D information
from the shape priors. On the other hand, the integration of
individual information and common information is generated
from our cross-modal attention modules.

3) Three-dimensional shape reconstruction: The 3D shape
reconstruction is solved by adopting the decoder to recover
the 3D information from the fused feature. Moreover, a shape
refiner [40] is employed for better performance, but in the
sacrifice of network lightness.

We will detail these three parts in the following subsections.

A. Cross-modal prior knowledge extraction

Following the previous work of [48], we deploy the cross-
modal retrieval method based on metric learning. In [48], Nie
et al. first adopted a pose estimation network to predict the
pose information of the input image. Then, this method takes
a single-view image for 3D shape representation, which is
rendered from a shape under the predicted pose. An extra
CNN architecture is employed for 3D model feature extraction.
Subsequently, this approach introduces a joint network for
cross-modal feature learning, which effectively decreases the
gap between modalities. In this procedure, metric learning is
exploited to control the cross-modality feature distribution.
The performance on the MI3DOR dataset [49] demonstrates
the effectiveness of this method. Therefore, we utilized this
method in our work for the retrieval of prior knowledge (3D
structural information) from the input image.

B. Multimodal Information learning

In this section, we extract the features of the input single-
view image and corresponding 3D shape priors, and then
fuse the multimodal information for 3D shape reconstruction.
Here, for effective feature learning, we extract domain-specific
characteristics from each modality. The retrieved 3D shape
priors are selected based on the similarity of 3D structures.
Thus, this modality can provide an approximate description of
the target 3D structure while still lacking individual details.
Considering that the single-view image explicitly describes
the target shape from the 2D perspective, we can directly
capture the distinguishing characteristics from this modality
to compensate for the lack of individual characteristics in the
3D modality.
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Based on these analyses, we face three problems: 1) How
can the distinguishing individual information be extracted dur-
ing the feature learning of single-view images? 2) How can the
general structure information be captured during the feature
learning of the 3D shapes? 3) How can these separate learned
information be combined for 3D shape reconstruction? To deal
with these problems, we design different network components,
which will be introduced in the following subsections.

1) Image Encoder: In this section, we plan to utilize
the target image to guide the generation of individual 3D
information. Therefore, we need to guarantee that the ex-
tracted image feature includes such distinguishing individual
information. Here, we redesign the encoder network based on
the VGG-16 structure [50]. The details of the image encoder
are shown in Figure 2. We also employ additional branches
as skip connections, which can effectively compensate for
the distinguishing features of different scales during the re-
construction. The stacked convolutional layers can effectively
extract the individual information of different scales. To guide
the learning of this distinguishing individual information, the
loss function L2D is designed to amplify the individual details
of the input image. The loss function is as follows:

L2D = − 1

B

B∑
i=1

log(
exp(fifTi )∑B
j=1 exp(fifTj )

), (1)

where i, j is the index of the feature vector, and f denotes
the feature vector. fT represents the image feature’s transpose.
B is the size of the training data batch. We compute the
cross-correlation of each image feature vector in every batch
of input samples. Here, each sample can be considered an
individual class because the aim of feature learning is to
amplify the individual characteristics of the current sample.
Thus, we minimize this function to extract more individual
information from the extracted image features.
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Fig. 2. Architecture of the image encoder. The green, blue, yellow, and red
arrows represent the skip connections of the feature maps of the input image.

2) Three-Dimensional Shape Prior Encoder: We are in-
spired by the method in [51] to design the 3D shape prior
encoder. This encoder extracts the features of retrieved shape
priors. Because the priors provide a general representation of
the target 3D structure, the extracted features should include
a union of similar structures in the 3D domain. As shown in
Fig. 3, we design five 3D convolutional blocks and an extra
linear layer to obtain a feature vector of length 1024 from a
32×32×32 voxel gird. The kernel size of these convolutional
layers is 43 with padding of 1. The linear layer is used only
to adjust the output channels.

To capture more similar structures of the retrieved priors,
we introduce the cross-entropy loss function for the parameter
learning. The loss function is as follows:

L3D = − 1

N

N∑
i=1

C∑
c=1

y∗iclog (yic), (2)

where N is the number of training samples, and C is the
number of classes. yic represents the predicted probability
of class c, and y∗ic is the one-hot coding value of the real
label. We applied this loss function to capture the common 3D
characteristics under each class and to encode these categorical
shape structures into the output features.

We also tried to increase the depth of the shape prior
encoder. However, additional convolutional layers do not lead
to better performance. It not only increases the computa-
tion complexity and optimization difficulty, but also causes
the information oblivion in shallow layers. However, too
few convolution layers fail to capture sufficient structural
information for the reconstruction, which is revealed by the
wrong reconstruction of categorical parts on the shape. A
practical case is that, an input chair with four straight legs
was wrongly reconstructed as a board with no legs, which
runs counter to the common understanding of the structure
of chairs. In the future, we hope to introduce proper residual
connections into the deeper prior encoder to further enhance
the representational ability of the 3D prior features.
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Fig. 3. Architecture of the 3D encoder. We applied the cross-entropy loss
function to optimize the parameters of this network.

3) Multimodal Information Fusion: The multimodal inputs,
the view, and the prior knowledge are encoded to obtain the
individual feature vectors and the common feature vectors,
respectively. For example, for the input view of a ”chair”, the
view encoder usually focuses on the shape of the armrests,
back and seat surface (round, square, tall, short, and hollow,
etc.), and the type of legs (straight, curved, or five-star legs,
etc.), while the 3D shape encoder focuses on the common
characteristics of chairs, for instance, the existence of backs
and legs. Obviously, these common features are composed of
some individual features, and the individual features provide
the structural characteristics of the target object that cannot
be ignored. Therefore, we design a multimodal information
fusion module, MM-Fusion, based on the attention mechanism
in Transformer [52], which focuses on the information inter-
action between different features and cascades the correlation
between them to achieve cross-modal feature fusion.

The structure of the multimodal information fusion module
is shown on the left of Fig.4. The input of the module consists
of two parts, image features and prior knowledge feature sets
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(a collection of features of related 3D prior shapes). As shown
in the figure, the fusion module consists of a series of cross-
modal attention sub-blocks, and each sub-block can accept
two input vectors. They are named as side input term, fs, and
bottom input term, f b, according to the input positions in the
Fig.4. Among them, in order to make full use of the prior
knowledge, all the subblocks take the output of the previous
level one as the f b, except that the first subblock accepts
image features as its f b. Similarly, to prevent the network from
forgetting the image details, all the subblocks take different 3D
prior features as the fs, except the fs of the last subblock,
which accepts the residual connection of image features.
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Fig. 4. Detailed structure of the Multimodal information fusion network (MM-
Fusion).

Specifically, each cross-modal attention subblock contains
multiple attention units, and the unit structure is shown on
the right of Fig.4. Each unit mainly consists of a multi-head
cross attention mechanism and a feed-forward unit. First, the
fs and f b of each subblock need to be pre-processed by the
linear layer. We name the processed results of f b as the term
q, while naming the processed results of fs as terms k and
v. Then, the cross-modal attention units can be expressed as
follows.

f bn = LNorm(f b),fsn = LNorm(fs) (3)
q = f bnWQ,k = fsnWK ,v = fsnW V (4)
z = MHCA(q,k,v) (5)
z′ = z + fs (6)
z′′ = FFW(LNorm(z′)) (7)
f = z′′ + z′ (8)

where WQ, WK and W V are the linear layer weight matrices
used for pre-processing. MHCA, LNorm, and FFW represent

the multi-head cross attention, layer normalization, and feed
forward unit, respectively. The term z represents the multihead
attention result, f represents the fusion result of this attention
unit, z′ and z′′ is the intermediate result of the unit.

To be specific, layer normalization, LNorm, computes the
mean and variance on each input feature and reduces the
feature scale to speed up the convergence of training. Feed
forward unit, FFW, is a multilayer perceptron with only one
hidden layer and uses the GELU (Gaussian Error Linear Unit)
function [53] for activation. Multi-headed cross attention can
be expressed as follows,

CrossAttn(q,k,v) = softmax
(
qkT /

√
dk

)
v (9)

Headh = CrossAttn(qh,kh,vh) (10)
z = Concat (Head1, . . . ,HeadH)WO (11)

Here, kT is the transpose of embedding k, dk represents
the length of the vector, Headh represents the result of the
calculation of the hth attention head (the total number of
attention heads is H). The function Concat splices the features
on the channel, and the matrix WO is the weight of the linear
layer that processes the splice result.

C. Three-Dimensional Shape Reconstruction
In the shape decoder, we apply a structure that is symmetric

with the 3D shape encoder. The decoder needs to transform
the previously fused features into 3D volumes. We design
a stack of 3D transposed convolutional blocks [54] in the
decoder, as shown in Fig.5. The whole structure receives a
combined feature of size 1×1024 and outputs a voxelized 3D
shape of size 32 × 32 × 32. These blocks are all composed
of a transposed 3D convolution layer followed by a 3D batch
normalization layer and a ReLU (Rectified Linear Unit) for
optimization, except the last block, which imposes a sigmoid
optimization for the voxel occupation probability.

To obtain sufficient information from the input image, we
introduce the image encoder’s processing information into
the transposed convolutional layers in the decoder using skip
connections [55], [56]. These connections are illustrated as the
colored arrows in Fig.2 and Fig.5 (Arrows in the same color
means they are the same skip connection). This operation is
to compensate for the oblivion of the input information during
3D shape reconstruction. Note that the feature maps from the
image encoder is reshaped to match the input size of its skip-
connected 3D transposed convolutional layer.

Furthermore, we introduce the refiner network inspired by
[57]. It aims to correct the wrongly recovered parts of a
reconstructed 3D volume. Following the concept of a 3D
encoder-decoder with U-net connections, the refiner preserves
the local structure in the fused volume to generate optimized
3D volumes at 323 resolution.

1) Optimization: The loss function of the network is de-
fined as the mean value of the voxelwise binary cross-entropy
(BCE) between the reconstructed object and the ground truth.
More formally, it can be defined as

Lo =
1

S

S∑
i=1

[gtilog (pi) + (1− gti) log (1− pi)] (12)
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Fig. 5. Architecture of the reconstruction network (Decoder). The input of
the decoder is the fused information of the image encoder and the 3D shape
encoder’s output. Meanwhile, we introduce the skip connections from the
image encoder which are indicated by the green, yellow blue and red arrows.

where S is the number of reconstructed voxel units per
shape. gt represents the ground truth shape, and p is the
predicted occupancy probability. The decrease in the Lo value
demonstrates that the prediction approaches the ground truth.

Overall, the loss function L2D and L3D are used for updat-
ing the parameters of the image encoder and shape encoder,
respectively. Lo reflects the reconstruction quality and, thus, is
employed for updating the parameters of the entire network.
Besides, we employ an additional BCE loss, Lr, to train the
Shape Refiner. The classic Adam optimizer [58] is used to
handle the optimization.

IV. EXPERIMENTS

In this section, we present extensive experimental evalua-
tions of CPG3D on the ShapeNet [59] and Pix3D datasets [60].
We first describe the datasets and evaluation protocols. Then,
the implementation details of the proposed methods are shown
briefly. Above all, we report experimental evaluations of the
proposed methods against state-of-the-art methods. Based on
this, the ablation study and analysis further reveal the inner
rationality and effectiveness of the proposed method.

A. Datasets

ShapeNet: ShapeNet [59] is announced as an ongoing
effort to establish a richly annotated large-scale dataset of
3D shapes. However, the complete ShapeNet dataset is still
not publicly available. For a more convenient use of the
dataset, ShapNetCore V1 was released as a subset of the full
ShapeNet dataset with single clean 3D models and manually
verified category and alignment annotations. It covers 55
common object categories with approximately 51,300 unique
3D models, but no rendered images are provided. Thus, we
use the renderings provided by Choy et al. [7]. They rendered
every model into 24 views and voxelized the models into 3D
voxels while following the original naming and classifying
strategies. The 24 randomly rendered views of each 3D model
are of size 137 × 137, and voxelized 3D shapes are of size
32 × 32 × 32. In addition, a uniform colored background is
applied to the image during the experiment.

Pix3D: The Pix3D dataset [60] is a large-scale benchmark
of diverse image-shape pairs with pixel-level 2D-3D alignment
that is specially built for image-based reconstruction tasks.
The dataset contains 395 real-world models and 10,069 images

of 9 object classes. Different from other previous datasets,
Pix3D possesses both real-world images and precise 2D-3D
alignment while maintaining the divergence of 3D models. The
Pix3D dataset comes with rich information about each image-
shape pair: 2D and 3D key points, voxel representation, image
mask, and rendering camera intrinsic and extrinsic parameters.
Moreover, Pix3D denotes the occlusion and truncation of each
model as fields in the comprehensive document.

B. Evaluation Metrics

Before evaluating the reconstruction quality of the proposed
method, we binarize the reconstructed probability voxels at
a fixed threshold of 0.4 and thus output the standard voxel
shapes. For the similarity measure between reconstructed
shape and ground truth, we use intersection over union (IoU),
which suits volumetric approaches best. More formally,

IoU =

∑
i,j,k I

(
ŷ(i,j,k) > τ

)
I
(
ŷ(i,j,k)

)∑
i,j,k I

[
I
(
ŷ(i,j,k) > τ

)
+ I
(
y(i,j,k)

)] (13)

where τ is the threshold of the previously mentioned bina-
rization. The term y and ŷ represent the predicted probability
and the corresponding occupancy of the ground truth at voxel
position (i, j, k), respectively. For a more robust indicator
of the reconstruction performance, Tatarchenko et al. [61]
proposed an F-score that calculates the harmonic mean be-
tween precision and recall. In this case, precision indicates
the accuracy of the reconstruction, and recall indicates the
completeness of the reconstruction. More formally,

F-score(d) =
2P (d)R(d)

P (d) +R(d)
(14)

where P (d) and R(d) represent the precision and recall at a
fixed distance threshold d, respectively. Specifically,

P (d) =
1

nR

∑
r∈R

[
min
g∈G
‖g − r‖ < d

]
(15)

R(d) =
1

nG

∑
g∈G

[
min
r∈R
‖g − r‖ < d

]
(16)

where R and G denote the reconstructed and ground truth
point clouds, respectively. The term n with subscripts R and
G represents the scale of the corresponding point clouds. The
F-score works on the point clouds and concerns the distance
between the points and surfaces. Therefore, for volumetric
approaches, we utilize the marching cubes algorithm [62] to
construct the object surface and then sample 8,192 points from
this surface for the F-score calculation. For the surface-based
methods without explicit points, we also use the marching
cube algorithm to construct the surface and then sample 8,192
points to compute the F-Score.

C. Implementation Details

Our network inputs are set to RGB images on the scale
of 224 × 224, and the retrieved voxels are all in the size
of 32 × 32 × 32. Note that the original volumetric shapes
in the Pix3D dataset are of size 128 × 128 × 128. Thus, we
downsampled the input voxel shapes into 323 to align with
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the input channel of the shape prior encoder. The volumetric
output is identical to the input voxels in size. For single-
view images, we use pre-trained VGG-16 [50]. The retrieved
voxels are encoded by the stacked 3D convolutional layers.
To effectively utilize the multimodal features, we set each of
the cross-modal attention blocks as two attention units with
six heads. On the decoder, we exploit five transposed 3D
convolutional layers to reconstruct the volumes. During the
training procedure, we implement our network in PyTorch with
a data batch size of 29 on a single Nvidia GTX 1080Ti GPU,
and the unfull batch is discarded. In addition, we use an Adam
optimizer [58] with a β1 of 0.9 and β2 of 0.999. The initial
learning rate is set to 10−5 and decays to a half after 150
epochs.

D. Single-view Reconstructions

1) Evaluation on ShapeNet: To demonstrate the perfor-
mance of our approach, we compare our method with several
SOTA methods on the ShapeNet dataset. To ensure a fair
comparison, all methods are evaluated under the same input
images for all experiments. The final experimental results are
listed in Tab.I. Higher scores of IoU and F-Score@1% indicate
better reconstruction quality.

Figure 6 shows several reconstruction examples on the
ShapeNet testing set. In these examples, benefiting from the
retrieved shape priors, CPG3D maintains the fundamental
structures of the target shape, such as the legs of the chair and
the spoiler wing of the sports car. Meanwhile, CPG3D also
captures more details of the input images, for instance, the
shapes of sofa armrests, holes in stool legs, and wheels of the
car. Compared with the implicit surface reconstruction method
DISN, our method recovers better details of the target shapes,
but DISN always reconstructs smoother surfaces, which is the
inborn advantage of the implicit surfaces.

2) Evaluation on Pix3D: We also evaluated the perfor-
mance on the Pix3D dataset. Pix3D aligned the 3D models
precisely with the images and marked the shapes of occlusion
and truncation. Thus, the results on the clear images can
verify the performance on single-view reconstruction, and the
results on the disturbed images demonstrate the positive effects
of the retrieved shape priors. The overall quantitative results
are shown in Tab.III. CPG3D achieves the best performance
compared with previous SOTA methods. We visualized some
reconstructed examples and corresponding retrieved priors in
Fig.7. The quantitative results show that the introduction of
shape priors can also improve the reconstruction qualities
of real-world images. In addition, we reconstruct both the
occluded images and unoccluded images in Fig.8 and Fig.9,
respectively. The visualized results on unoccluded shapes show
that CPG3D outperforms previous methods and recovers more
details of the target shapes. On the other hand, the visualized
results on occluded shapes obviously outperform the previous
methods. CPG3D correctly recovers the occluded parts in the
input images, while other methods are confused by these
disturbances. These evaluated results indicate that CPG3D
generates more compelling shapes on images with complicated
backgrounds and disturbances such as occlusion.

3) Higher-Resolution 3D Object Reconstruction: Shapes
in low resolution have better portability due to their lightness
in size. However, this property also signifies their lack of
high-frequency shape details. Therefore, unlike the commonly
researched resolution of 323, we fit our method to reconstruct
shapes in higher resolution to evaluate the performance of
our 3D-prior-based method in handling more complex details.
Following the experiment settings in OGN [26], we report
the mean IoU and F-Score@1% in the resolution of 643 and
1283 in Tab.IV. The experimental results show that our method
outperforms Pix2Vox, Matryoshka [69], and OGN by a large
margin. Furthermore, to illustrate the reconstructing ability, we
visualized several examples in Fig.10, as shown in which, our
method is more capable of capturing high-resolution details
than the previous method, such as the hubs, pedals, police
lights, and bumpers.

E. Ablation Study

1) Network Structure Ablation: There are four modules
in this network: image encoder, 3D model encoder, feature
fusion module, and shape reconstruction module. We per-
formed ablation experiments on these modules to demonstrate
the rationality and superiority of our design. The quantitative
results on the ShapeNet dataset are listed in Tab.V.

a) Ablation on Image Encoder: Our shape reconstruction
occurs under the guidance of shape priors. Nevertheless, the
retrieved shape priors focus on the recovery of structurally
similar areas, which leads to unsatisfactory reconstructions.
Relevant experimental results are in Tab.V.

b) Ablation on Shape Encoder: To demonstrate the ef-
fectiveness of shape priors, we performed an ablation study
on the shape encoder, i.e., reconstruction from input images.
Although the quantitative results are comparable to those of
some previous methods, there is still room for improvement
when compared with our prior-guided pipeline.

c) Ablation on Refiner: Our reconstructions from the
shape decoder are further optimized in a U-net [56] manner,
which is defined as refiner in the shape reconstruction module.
Here, we pruned refiner to test the optimization effects. The
quantitative results in Tab.V demonstrate the important role of
Refiner in improving reconstruction quality.

d) Different Batch Sizes: Our baselines are divided into
w/o Refiner, w/o Shape Encoder, and w/o Image Encoder.
We conducted experiments of these baselines under different
batch sizes. Under the batch size of 29, the entire pipeline
achieved the best performance. According to the experimental
results in Tab.V, the performance of baselines improves with
increasing batch size, but the improvement trend gradually
stabilizes. The results of the baselines do not exceed the entire
pipeline’s performance. In conclusion, the batch size indeed
influences the performance of the baselines. However, the
effect is limited. The baseline methods, which lack relevant
modules, cannot get the best result beyond the entire pipeline
of CPG3D. It indirectly proves the necessity and rationality of
each module in our approach.

2) Loss Functions: We utilized different loss functions for
each module in our network: (1) L2D: Optimizing the image
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Input Image Prior Example Pixel2Mesh Attsets Pix2Vox++ CPG3DGround Truth DISN

Fig. 6. Examples of single-view 3D object reconstruction on the ShapeNet dataset.

TABLE I
COMPARISON OF SINGLE-VIEW 3D OBJECT RECONSTRUCTION ON SHAPENET AT 323 RESOLUTION. WE REPORT THE MEAN IOU PER CATEGORY. THE

BEST RESULT FOR EACH CATEGORY IS HIGHLIGHTED IN BOLD.

Category 3D-R2N2 [7] OGN [26] Pixel2Mesh [29] AttSets [39] Pix2Vox++ [40] DASI [13] Mem3D [11] CPG3D

Airplane 0.513 0.587 0.508 0.594 0.674 0.701 0.767 0.772
Bench 0.421 0.481 0.379 0.552 0.608 0.625 0.651 0.659

Cabinet 0.716 0.729 0.732 0.783 0.799 0.798 0.840 0.875
Car 0.798 0.828 0.670 0.844 0.858 0.861 0.877 0.894

Chair 0.466 0.483 0.484 0.559 0.581 0.578 0.712 0.724
Display 0.468 0.502 0.582 0.565 0.548 0.552 0.631 0.648
Lamp 0.381 0.398 0.399 0.445 0.457 0.470 0.535 0.544

Speaker 0.662 0.637 0.672 0.721 0.721 0.723 0.778 0.791
Rifle 0.544 0.593 0.468 0.601 0.617 0.652 0.746 0.758
Sofa 0.628 0.646 0.622 0.703 0.725 0.723 0.753 0.770
Table 0.513 0.536 0.536 0.590 0.620 0.614 0.685 0.692

Telephone 0.661 0.702 0.762 0.743 0.809 0.801 0.823 0.836
Watercraft 0.590 0.632 0.471 0.601 0.603 0.622 0.684 0.695

Overall 0.560 0.596 0.552 0.642 0.670 0.676 0.729 0.743

encoder by enhancing the differences between samples in a
batch (note that L2D(CE) is a cross-entropy variant of this
function); (2) L3D: a cross-entropy loss function concentrating
on the categorical information of 3D priors; (3) Lo and Lr: two
binary cross-entropy loss functions comparing the 3D occu-
pancy between the predicted shape and corresponding ground
truth. In this part, we validate the effects under different loss
functions. Related experimental results are listed in Tab.VI.
Note that BCE loss is indispensable for shape reconstruction,
and thus our experiments reveal the effects of other losses
based on Lo and Lr. For simplicity, we note Lo + Lr as
LBCEs.

It is obvious that images lack the details of unseen parts,

and the shape priors struggle to recover object-specific details.
This situation requires our network to capture more individual
details from input images and more generic structures from
combined shape priors. The commonly used loss function
L2D(CE) focuses on category-level features, while our L2D

emphasizes the importance of object-divergent features. The
improvement from L2D(CE) + LBCEs to L2D + LBCEs

demonstrates that the object-divergent information indeed ben-
efits the reconstruction. Consistent with the above conclu-
sions, L2D + LBCEs outperforms L3D + LBCEs and even
L2D(CE)+L3D+LBCEs due to the incorporation of individual
features. The loss term L2D + L3D + LBCEs takes both
individual details and generic structures into consideration and
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TABLE II
COMPARISON OF SINGLE-VIEW 3D OBJECT RECONSTRUCTION ON SHAPENET AT 323 RESOLUTION. WE REPORT THE F-SCORE@1% PER CATEGORY.

THE BEST RESULT FOR EACH CATEGORY IS HIGHLIGHTED IN BOLD.

Category 3D-R2N2 [7] OGN [26] Pixel2Mesh [29] AttSets [39] Pix2Vox++ [40] DASI [13] Mem3D [11] CPG3D

Airplane 0.412 0.487 0.376 0.489 0.583 0.604 0.671 0.679
Bench 0.345 0.364 0.313 0.406 0.478 0.484 0.525 0.531

Cabinet 0.327 0.316 0.450 0.367 0.408 0.431 0.517 0.536
Car 0.481 0.514 0.486 0.497 0.564 0.574 0.590 0.598

Chair 0.238 0.226 0.386 0.334 0.309 0.296 0.503 0.511
Display 0.227 0.215 0.319 0.310 0.296 0.299 0.498 0.507
Lamp 0.267 0.249 0.219 0.315 0.315 0.336 0.403 0.414

Speaker 0.231 0.225 0.190 0.211 0.152 0.294 0.262 0.233
Rifle 0.521 0.541 0.340 0.524 0.574 0.604 0.626 0.632
Sofa 0.274 0.290 0.343 0.334 0.377 0.393 0.434 0.445
Table 0.340 0.352 0.502 0.419 0.406 0.392 0.569 0.571

Telephone 0.504 0.528 0.485 0.469 0.633 0.638 0.674 0.683
Watercraft 0.305 0.328 0.266 0.315 0.390 0.425 0.461 0.470

Overall 0.351 0.368 0.398 0.395 0.436 0.443 0.517 0.524

Retrieved PriorsInput GT

(With 1 Retrieval) (With 2 Retrievals) (With 3 Retrievals)

Generated Results

Fig. 7. Single-view 3D object reconstructions and related retrieved priors on the Pix3D dataset.

TABLE III
COMPARISON OF SINGLE-VIEW 3D OBJECT RECONSTRUCTION ON PIX3D

AT 323 RESOLUTION USING MEAN IOU AND F-SCORE@1%. THE BEST
RESULT IS HIGHLIGHTED IN BOLD.

Method IoU F-Score@1%

3D-R2N2 [7] 0.136 0.018
3D-VAE-GAN [63] 0.171 -
MarrNet [64] 0.231 0.026
DRC [65] 0.265 0.038
ShapeHD [66] 0.284 0.046
DAREC [67] 0.241 -
Pix3D [60] 0.267 0.041
Pix2Vox++ [40] 0.288 0.068
DASI [13] 0.310 -
FroDo [68] 0.325 -
Mem3D [11] 0.387 0.143
CPG3D 0.391 0.152

TABLE IV
COMPARISON OF SINGLE-VIEW 3D OBJECT RECONSTRUCTION ON

SHAPENET AT 643 AND 1283 RESOLUTION. WE REPORT THE MEAN IOU
AND F-SCORE@1%. THE BEST RESULT OF EACH METRIC IS HIGHLIGHTED

IN BOLD.

Method Resolution-643 Resolution-1283

IoU F-Score@1% IoU F-Score@1%

OGN [26] 0.771 0.361 0.782 0.390
Matryoshka [69] 0.784 0.380 0.794 0.426
Pix2Vox++ [40] 0.803 0.418 0.826 0.475
CPG3D 0.839 0.455 0.860 0.521

undoubtedly achieves the best performance.
3) Skip connections: The deep neural network is difficult

to optimize due to overfitting, unstable random initialization,
and gradient problems. Inspired by the designs of ResNet [70]
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Input Pix3D
CPG3D

(w/o Priors)

CPG3D

(w/ Priors)
GT

Fig. 8. Reconstructions of occluded samples on the Pix3D dataset.

Input Pix3D
CPG3D

(w/o Priors)

CPG3D

(w/ Priors)
GT

Fig. 9. Reconstructions of unoccluded samples on the Pix3D dataset.

and U-Net [71], we introduced skip connections between the
image encoder and the reconstruction decoder. Although this
design has widely proven to be effective for network conver-
gence, the connection orders still remain to be further studied.
To weigh the improvement benefited from skip connections
against the computational consumption caused by the same
scheme, we evaluated our network on different orders of such
connections, and the quantitative results are listed in Tab.VII.
Here, following the structure in Fig.1, Skc represents the skip
connection, and the indexes ascend from shallow to deep in
the image encoder. Experimental results show that the relative

Ground Truth Prior Example OGN CPG3DInput Image

Fig. 10. Single-view reconstructions on ShapeNet-car dataset at 1283

resolution.

TABLE V
ABLATION STUDY ON THE NETWORK STRUCTURE.

Structure - Batchsize IoU F-Score@1%

CPG3D - 29 0.743 0.524

w/o Refiner
- 35 0.723 0.498
- 29 0.722 0.498
- 8 0.718 0.475

w/o Shape Encoder
- 35 0.702 0.453
- 29 0.698 0.451
- 8 0.676 0.432

w/o Image Encoder
- 35 0.667 0.428
- 29 0.664 0.427
- 8 0.660 0.422

TABLE VI
EFFECTS OF DIFFERENT LOSS FUNCTIONS ON SHAPENET DATASET. (NOTE
THAT WE USE “+” TO REPRESENT “AND” BUT NOT MATHEMATICAL PLUS

OPERATION.)

Loss IoU F-Score@1%

LBCEs 0.703 0.468
LBCEs + L2D(CE) 0.708 0.472
LBCEs + L3D 0.716 0.482
LBCEs + L2D(CE) + L3D 0.720 0.488
LBCEs + L2D 0.731 0.512
LBCEs + L2D + L3D 0.743 0.524

high-resolution features from shallow layers can compensate
for the information in deep layers in the decoder and thus
produce better reconstructions.

4) Influence of Different Batch Sizes: We optimized
image loss L2D to capture the divergent information between
input images. Because L2D is computed within a batch, we
evaluated the network on different batch sizes. As illustrated in
Fig.11, the size of the bubbles is proportional to the VRAM
usage. A larger batch size tends to capture more divergent
information while the VRAM consumption increases simul-
taneously. We perform the experiment on a single NVIDIA
GTX 1080Ti, which supports a maximum batch size of 29,
and we will explore the performance on a larger batch size in
future work.
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TABLE VII
EXPERIMENTS ON DIFFERENT SKIP-CONNECTION ORDERS.

Skip-connection(s) IoU↑ VRAM Usage (MB)↓

Skc4 0.668 11031
Skc3 0.673 10864
Skc2 0.678 10680
Skc1 0.683 10653

Skc2 + Skc3 + Skc4 0.716 11124
Skc1 + Skc3 + Skc4 0.721 11097
Skc1 + Skc2 + Skc4 0.725 10943
Skc1 + Skc2 + Skc3 0.728 10869

Skc1 + Skc2 + Skc3 + Skc4 0.743 11151
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#VRAM Usage

10000 MB
8000 MB

6000 MB

Fig. 11. IoU score and VRAM usage of different batch sizes.

F. Analysis

1) Influence of Disturbances on Retrieved Priors:
a) Positive Disturbances: Our cross attention module is

sensitive to the size of the input feature sequence, which
is experimented as a positive disturbance on the retrieved
priors. In this part, we trained our network on different
numbers of retrieved priors and used IoU as the criterion.
The results are visualized as the orange-colored histogram
in Fig.12. Considering that the function L3D leads to more
general representations of similar 3D structures, our newly
increased shape priors can enrich these representations and
thus positively influence our reconstruction. Nevertheless, this
positive impact is not unlimited due to the redundancy of
similar information. Our experiment shows that the increase
is almost halted when there are more than five input priors.

b) Negative Disturbance: For some samples with unique
structures, the increasing number of retrieved priors inevitably
introduces priors of low retrieval confidence. Here, we ar-
tificially introduce specific numbers of unmatched priors to
evaluate the robustness of the network. The qualitative results
(green-colored histogram in Fig.12) show that our network can
maintain the performance when the number of mismatched
priors is less than 3. Note that the extreme situation of input
ten mismatched priors still reached the IoU of 0.634, which
also verified the robustness of our network on this disturbance.

Influence of Mismatched PriorsIo
U

Input Numbers

Fig. 12. Influence of Disturbances on Retrieved Priors

2) Comparison with Best Retrieval Baseline: As men-
tioned in [61], encoder-decoder structured networks easily
fall into the recognition [61] problem, which merely pertains
to the whole object and only performs the retrieval on the
dataset. To test the upper bound of the retrieval methods on
ShapeNet, we evaluated the Oracal Nearest Neighbour (Oracal
NN) baseline, which, based on our shape encoder, finds the
most similar shape from the training set for shapes in the
test set and calculates IoU between the ground truth and the
retrieved shape. The Oracle NN baseline demonstrates the best
performance of the retrieval methods, which, on the other
hand, confirms that our method is not a pure recognition
network. The experimental results are listed in Tab.VIII.

TABLE VIII
COMPARISON WITH ORACLE NN

Category Airplane Bench Cabinet Car Chair Display Lamp

CPG3D 0.772 0.659 0.875 0.894 0.724 0.648 0.544
Mem3D 0.767 0.651 0.840 0.877 0.712 0.631 0.535

OracleNN 0.540 0.341 0.576 0.778 0.291 0.412 0.218

Category Speaker Rifle Sofa Table Telephone Watercraft Overall

CPG3D 0.791 0.758 0.770 0.692 0.836 0.695 0.743
Mem3D 0.778 0.746 0.753 0.685 0.823 0.684 0.729

OracleNN 0.498 0.484 0.499 0.293 0.805 0.442 0.458

3) Analysis of Feature Fusion Methods: To handle the
fusion of multimodal information, we modified the cross
attention mechanism from Transformer [52] and designed the
MM-Fusion module. To verify the effect of this design, we
compare it with some classic information fusion strategies.
The related experimental results in Tab.IX show that MM-
Fusion outperforms other methods. This structure can effec-
tively reduce the redundant information and thus guarantee the
effectiveness of the fused features.

4) Analysis of Feature Distribution: In this paper, we
utilize the retrieved 3D priors to supplement structural infor-
mation lost due to occlusion and background noise. Assume
that the reconstruction target is a chair with rectangular
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TABLE IX
EFFECTS OF DIFFERENT FUSION METHODS ON SHAPENET DATASET.

Method IoU F-Score@1%

Addition 0.436 0.205
Straight-Connect 0.602 0.351
Average-Pooling 0.622 0.377

Max-Pooling 0.671 0.429
MM-Fusion 0.743 0.524
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Fig. 13. (a) Distribution of features extracted by the image encoder. (b)
Distribution of features extracted by the shape prior encoder.

arms and four straight legs. The retrieved priors capture this
structural information while they are different in details, such
as the thickness of the legs or the size of the arms. In other
words, these priors are clustered according to the general
3D structures. However, the goal of 3D reconstruction is to
recover the exact object from the input image but not to
retrieve a similar 3D structure. Thus, we apply a correlation
loss L2D to guide the image feature learning to capture more
characteristic features. Here, we apply the tSNE [72], [73]
toolbox to visualize the distribution of extracted image features
and prior features in Fig.13. As illustrated in the figure,
the shape priors clustered tighter according to the class to
which they belong, but in some special categories, the network
struggles to distinguish features such as the ’Cabinet’ and
’Speaker’ because their ShapeNet ground truth volumes are
similar in size and also share some common characters in 3D
appearance. On the other hand, the image features are loosely
distributed because they are more concerned with individual-
level discrimination. This observation validated the rationality

of our motivation as well as the effectiveness of the network
design.

Input Image Ground Truth w/o Priors w/ Priors

Fig. 14. Reconstrucions on unseen categories on ShapeNet dataset.

5) Analysis of Generalization: To test the generalization
of CPG3D, we processed ShapeNet categories beyond the
13-category data used in previous experiments in IV-D and
performed evaluations on CPG3D. Note that our priors are
also fine-tuned on novel categories. Some experimental results
are visualized in Fig.14. As shown in the figure, CPG3D
captures the general structures of target shapes, but there is
still a gap between the reconstructed details and ground truths.
Our method basically recovers the overall structure informa-
tion. Furthermore, comparing reconstructed shapes with and
without priors, CPG3D indeed learns essential information for
better reconstructions from shape priors. This demonstrates the
necessity of introducing prior information.

V. CONCLUSION

In this paper, we proposed a novel approach for reconstruct-
ing high-quality 3D objects based on a single-view image
and its related 3D shape prior knowledge. We creatively
utilized the image to retrieve similar 3D shapes as prior
knowledge. These retrieved priors can provide effective ge-
ometric information for 3D reconstruction. Meanwhile, we
proposed a novel cross-modal integration network for the joint
learning of views and priors. Subsequently, we reconstruct
the object volume from integrated features and introduced
skip connections to optimize the reconstruction. Experimental
results demonstrated that our approach significantly improves
the reconstruction quality and performs favorably against state-
of-the-art methods on the ShapeNet and Pix3D datasets.
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