

An Introduction to Implicit Neural Representations for Image-Based Modeling

Xiaowei Zhou Zhejiang University

Image-based modeling and rendering

Traditional methods and their limitations

Implicit Neural Representations

- Neural Radiance Fields (NeRF)
- Neural SDF for surface reconstruction
- Neural dynamic scene representations

Image-based modeling and rendering

Nerf in the wild: Neural radiance fields for unconstrained photo collections. CVPR. 2021.

冨

Applications

VR tour

Matterport **Google Immersive View**

Bullet time effect

Bullet time effect in "The Matrix"

Free-viewpoint video

Intel TrueView まちゃっともしてはないのは、 おものには、 湖南卫视舞蹈风暴

Immersive telepresence

Google Project Starline

Embodied AI: training agents in simulated environments

Autonomous driving **Robots**

Image-based modeling and rendering

Traditional methods

A Review of Image-based Rendering Techniques, *Visual Communications and Image Processing* 2000.

3D mesh with texture map

Mesh reconstruction pipeline

SfM MVS MUS Fusion Mesh extraction

High-Quality Streamable Free-Viewpoint Video, *SIGGRAPH* 2015.

 \equiv

Capture system

冨

53 RGB cameras and 53 IR cameras

High-Quality Streamable Free-Viewpoint Video, *SIGGRAPH* 2015.

Limitations:

- High-quality mesh reconstruction is difficult in many cases
- Cannot represent very complex scenes

Multi-Plane Image (MPI)

A set of front-parallel planes at a fixed range of depths

Each plane encodes an RGB color image C_d and an alpha/transparency map α_d

Multi-Plane Image (MPI)

靠

DeepView: View synthesis with learned gradient descent. CVPR, 2019.

$RGB-\alpha$ volume

F

Neural Volumes: Learning Dynamic Renderable Volumes from Images, *SIGGRAPH* 2019.

罰

Neural volumes: an encoder-decoder network that transforms input images into a 3D volume representation

Neural Volumes: Learning Dynamic Renderable Volumes from Images, *SIGGRAPH* 2019.

罰

Neural volumes: an encoder-decoder network that transforms input images into a 3D volume representation

Neural Volumes: Learning Dynamic Renderable Volumes from Images, *SIGGRAPH* 2019.

Advantages:

- Can represent very complex scenes
- Realistic reflections / specularity / transparency

Limitations:

• Discrete 3D volume requires large storage size for high-resolution rendering

Implicit Representations

Occupancy Networks: Learning 3D Reconstruction in Function Space, *CVPR* 2019.

Implicit Representations

The implicit function can be:

Occpupacy Signed distance function (SDF)

Implicit Neural Representations

MLP

Occupancy Networks: Learning 3D Reconstruction in Function Space, *CVPR* 2019.

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, *CVPR* 2019.

Learning implicit fields for generative shape modeling, *CVPR* 2019.

Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations, NeurIPS 2019.

譶

Representing scenes as continuous density and color fields

Representing scenes as continuous density and color fields

Neural Volumes: Learning Dynamic Renderable Volumes from Images, *SIGGRAPH* 2019. NeRF: Representing scenes as neural radiance fields for view synthesis, *ECCV* 2020.

Volume rendering, which is differentiable

譶

Learning NeRF from images

譶

Learning NeRF from images

譶

NeRF: Representing scenes as neural radiance fields for view synthesis, *ECCV* 2020.

冨

Why better?

- The representation is continuous and flexible
- Optimizing rendering quality end-to-end

Limitations:

- Computationally inefficient in terms of training and inference Optimizing a MLP network needs about 1 day **NeRF** Render one novel view needs 30 seconds
- Cannot model dynamic scenes
- Poor surface reconstruction quality

1.6 days 31.15 dB

Limitations

- Computationally inefficient in terms of training and inference
- Cannot model dynamic scenes
- Poor surface reconstruction quality

Limitations

- Computationally inefficient in terms of training and inference
- Cannot model the motion of dynamic scenes
- Poor surface reconstruction quality

Reference image COLMAP NeRF 35

Neural SDFs for Surface Reconstruction

Surface reconstruction vs. Volumetric reconstruction

Neural SDFs for Surface Reconstruction

譶 V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky. [1] Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision, *CVPR* 2020. [2] Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance, *NeurIPS* 2020.

Limitation of surface rendering

罰 NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction, NeurIPS 2021.

NeuS

冨

NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction, NeurIPS 2021.

Optimizing SDF in a volumetric rendering framework

貳 NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction, NeurIPS 2021.

NeuS

譶

Advantages:

- Accurate 3D implicit surface reconstruction
- No need for depth or mask supervision

NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction, NeurIPS 2021.

NeuS

E

NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction, NeurIPS 2021.

Challenge: large-scale scene with thousands of images

Sphere-based sampling

Improving sampling efficiency by surface-guided sampling

Neural Reconstruction in the Wild, *SIGGRAPH* 2022.

譶

Credits: Flickr

Neural Reconstruction in the Wild, *SIGGRAPH* 2022.

Indoor scene reconstruction

Challenge: texture-low regions

Indoor scene reconstruction

Manhattan-world assumption

譶

Can be easily integrated when optimizing implicit neural representations

Neural 3D Scene Reconstruction with the Manhattan-world Assumption, *CVPR* 2022.

Indoor scene reconstruction

COLMAP VolSDF

—
≣∎ Neural 3D Scene Reconstruction with the Manhattan-world Assumption, *CVPR* 2022. Volume Rendering of Neural Implicit Surfaces, *NeurIPS* 2021.

Neural dynamic scene representations

NeRF cannot model dynamic scenes

Nerfies: Deformable neural radiance fields, *ICCV* 2021.

冨

Neural dynamic scene representations

Problem: scene movements cause the rays of different frames of the same observed point do not intersect

General dynamic scenes – Deformable NeRF

Deformable NeRF: a canonical NeRF + deformation fields

Nerfies: Deformable neural radiance fields, *ICCV* 2021.

譶

General dynamic scenes – Deformable NeRF

The deformation field from other frames to canonical frame is learned by another MLP

Nerfies: Deformable neural radiance fields, *ICCV* 2021.

General dynamic scenes – Deformable NeRF

Nerfies: Deformable neural radiance fields, *ICCV* 2021.

 \equiv

General dynamic scenes – NSFF

 \exists

NSFF: Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes, *CVPR* 2021

General dynamic scenes – NSFF

F

3D scene flow visualization

NSFF: Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes, *CVPR* 2021

General dynamic scenes

Advantages:

• Can model general objects and scenes, not restricted to human

Limitations:

- Need to optimize canonical NeRF and motion field simultaneously, which is prone to local optima
- It is very hard to recover large and long-range motion, e.g. fast moving human bodies

Reconstructing dynamic human from sparse views

Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic
... T Turnans, C v T N Z C Z T . 60 Humans, *CVPR* 2021.

Reconstruction from sparse views is ill-posed

4 input views **NeRF** reconstruction

Integrating observations from multiple frames

4 input views Our reconstruction

Assume NeRFs at different frames are decoded from the same set of latent codes, whose locations are pose dependent

5 Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans, *CVPR* 2021. 63

The latent codes are decoded into NeRF by sparse convolution

Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans, *CVPR* 2021. 64

[1] Neural volumes: Learning dynamic renderable volumes from images, *SIGGRAPH* 2019.

[2] Nerf: Representing scenes as neural radiance fields for view synthesis, *ECCV* 2020.

Ë

Neural Body cannot synthesize images of novel human poses as the 3D convolution is not equivariant to pose changes

Key idea: deform NeRF with the linear blend scheme

Animatable neural radiance fields for human body modeling, *ICCV* 2021.

昻

Key idea: deform NeRF with the linear blend scheme

Animatable neural radiance fields for human body modeling, *ICCV* 2021.

譶

Replace NeRF with Neural SDF (NeuS)

譶

Animatable Implicit Neural Representations for Creating Realistic Avatars from Videos, *arXiv* 2022.

Monocular video \implies detailed surface

冨

Animatable Implicit Neural Representations for Creating Realistic Avatars from Videos, *arXiv* 2022.

Thanks**!**