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Overview

Image-based modeling and rendering
Traditional methods and their limitations

Implicit Neural Representations
* Neural Radiance Fields (NeRF)

 Neural SDF for surface reconstruction

* Neural dynamic scene representations
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Applications

VR tour

Matterport Google Immersive View




I Applications

Bullet time effect

RED Lion movie'shortes

Bullet time effect in "The Matrix"




¥ Applications

Free-viewpoint video
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I Applications

Immersive telepresence

3D imaging

Google Project Starline



I Applications

Embodied Al: training agents in simulated environments

Autonomous driving Robots

Block NeRF iGibson



I Image-based modeling and rendering

Output views

Input views

Image credit: Noah Snavely



Traditional methods

More Images . Less Images
Less Geometry More Geometry
Rendering with Rendering with Rendering with
No Geometry Implicit Geometry Explicit Geometry
Light Field Lumigraph Layered-Depth Images
Concentric Mosaics - . Texture-Mapped Models
Mosaicking View Morphing 3-D Warping
View Interpolation View-Dependent Geometry
View-Dependent Texture
Pop-Up Light Field
Plenoptic Video

@ A Review of Image-based Rendering Techniques, Visual Communications and Image Processing 2000.
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Surface-based representations

3D mesh with texture map
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I Surface-based representations
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Mesh extraction

Fusion

MVS



I Surface-based representations

@ High-Quality Streamable Free-Viewpoint Video, SIGGRAPH 2015.




I Surface-based representations

Capture system

53 RGB cameras and 53 IR cameras

@ High-Quality Streamable Free-Viewpoint Video, SIGGRAPH 2015.




I Surface-based representations

Limitations:
« High-quality mesh reconstruction is difficult in many cases

« Cannot represent very complex scenes




Volume-based representations

Multi-Plane Image (MPI)
A set of front-parallel planes at a fixed range of depths

Each plane encodes an RGB color image C; and an alpha/transparency map a4

Target RGB

(r,8,b,a)
: Y| x |-m
ﬁ] Target

Trget alpha
\— _J
Blend RGBA renderings together

to render final output image
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I Volume-based representations

Multi-Plane Image (MPI)

@ DeepView: View synthesis with learned gradient descent. CVPR, 2019.




I Volume-based representations

RGB-a volume

r(t) =rg+try

@ Neural Volumes: Learning Dynamic Renderable Volumes from Images, SIGGRAPH 2019.
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Volume-based representations

Neural volumes: an encoder-decoder network that transforms input
images into a 3D volume representation

7, | Decoder

Target Image

Input Multi-view Video

@ Neural Volumes: Learning Dynamic Renderable Volumes from Images, SIGGRAPH 2019.
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I Volume-based representations

Neural volumes: an encoder-decoder network that transforms
input images into a 3D volume representation

Neural Volumes: Learning Dynamic Renderable Volumes from Images, SIGGRAPH 2019.




Volume-based representations

Advantages:

» Can represent very complex scenes

* Realistic reflections / specularity / transparency

Limitations:

 Discrete 3D volume requires large storage size for high-resolution
rendering
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I Implicit Representations

Volume Point cloud Mesh Implicit function
\ J \ J
| |
Explicit & discrete Implicit & continous

@ Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019. I
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I Implicit Representations

The implicit function can be:

Occpupacy Signed distance function (SDF)




I Implicit Neural Representations

MLP

HQH\%H
(Hz.H
Al

Occupancy
‘ Signed Distance

3D coordinates ‘
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Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019.

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019.
Learning implicit fields for generative shape modeling, CVPR 2019.

Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations, NeurlPS 2019.




I Neural Radiance Fields (NeRF)

Representing scenes as continuous density and color fields

NeRF

«
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(x,y,2,0, ®) —>III—>(r, g,b,0)
Ny ! ——

Spatial Viewing Output Output
location direction F Q color density

Fully-connected
neural network

@ NeRF: Representing scenes as neural radiance fields for view synthesis, ECCV 2020.
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Neural Radiance Fields (NeRF)

Representing scenes as continuous density and color fields

Ligv(P)

Vv

Discrete RGB-a volume

(x,y,2,0, ®) —>III—>(r, g,b,0)
Ny et ——

Spatial Viewing Output Output
location direction F Q color density

Fully-connected
neural network

Continuous RGB-a field

@ Neural Volumes: Learning Dynamic Renderable Volumes from Images, SIGGRAPH 2019.

NeRF: Representing scenes as neural radiance fields for view synthesis, ECCV 2020.
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Neural Radiance Fields (NeRF)

Volume rendering, which is differentiable

Rendering model for ray r(t) = o + td: Ray

N
Cr ) Tiac
izzl ac\

colors

weights " 3D volume

How much light is blocked earlier along ray:

i—1
1; = H(1 — 0y)
j=1

@ NeRF: Representing scenes as neural radiance fields for view synthesis, ECCV 2020.




I Neural Radiance Fields (NeRF)

Learning NeRF from images
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Input multi-view images Optimizing NeRF

@ NeRF: Representing scenes as neural radiance fields for view synthesis, ECCV 2020.




I Neural Radiance Fields (NeRF)

Learning NeRF from images

5D Input Output Volume
Position + Direction Color + Density Rendering

> (x.%,2.6,6) > [":"]—» (RGBo) e

Rendering

Loss

TN

o F Ray 2 O/G/@" Ray 1 “ ~
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\ Ray Distance ”

2

2

@ NeRF: Representing scenes as neural radiance fields for view synthesis, ECCV 2020.
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I Neural Radiance Fields (NeRF)

Positional encoding:
 Standard coordinate-based MLPs perform poorly at representing high frequency details

 Passing input coordinates through a high frequency mapping

v(p) = (sin(2%7p), cos(2%7p), - - - , sin(2L~17p), cos(2L71mp) )

\ O ©

No Positional Encoding

@ NeRF: Representing scenes as neural radiance fields for view synthesis, ECCV 2020.




I Neural Radiance Fields (NeRF)

@ NeRF: Representing scenes as neural radiance fields for view synthesis, ECCV 2020.
31




I Neural Radiance Fields (NeRF)

Why better?

« The representation is continuous and flexible

« Optimizing rendering quality end-to-end
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I Neural Radiance Fields (NeRF)

Limitations:

« Computationally inefficient in terms of training and inference
Optimizing a MLP network needs about 1 day
Render one novel view needs 30 seconds NeRF

1.6 days
31.15dB




I Neural Radiance Fields (NeRF)

Limitations

« Cannot model dynamic scenes

34



Neural Radiance Fields (NeRF)

Limitations

« Poor surface reconstruction quality

Reference image COLMAP




Neural SDFs for Surface Reconstruction

Surface reconstruction vs. Volumetric reconstruction

V.

Signed distance RGB + density




Neural SDFs for Surface Reconstruction

Differentiable surface rendering

~ —1
od __ dfe (D) Ofe(P)
20— _(20) )" ot

= Camera
Implicit Model fy

DVRI!]

@ [1] Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision, CVPR 2020.
[2] Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance, NeurlPS 2020.




I Limitation of surface rendering

Surface

rendering,
such as IDR

>

>

> Volume

rendering,
such as NeRF

Reference image .—0— 0000

@ NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction, NeurlPS 2021.




I Neu$S
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Surface rendering Volume rendering Volume rendering

@ NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction, NeurlPS 2021. I
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Neu$S

Optimizing SDF in a volumetric rendering framework

Pixel color

Color +00
- m— Clo,v) = f w(t)e(p(t), v)dt

C(p(t)rv) 0
Sample ‘
points Signed =) wt ht
p(t) =o0+tv = distance vf(ltg)
SDF(p(t))
\ S-density ’
$s(SDF(p ()

@ NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction, NeurlPS 2021.




I Neu$S

Advantages:
 Accurate 3D implicit surface reconstruction

* No need for depth or mask supervision

Ah ¥

nce image IDR

NeuS

Refere

@ NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction, NeurlPS 2021. I
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@ NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction, NeurlPS 2021.
L4




I Large-scale scene reconstruction

Challenge: large-scale scene with thousands of images

far

Sphere-based sampling




I Large-scale scene reconstruction

Improving sampling efficiency by surface-guided sampling

far
‘ . surface
/ | position  _am,
. i // near \
22X o) D oy A )
L

Neural Reconstruction in the Wild, SIGGRAPH 2022.



I Large-scale scene reconstruction

Credits: Flickr

@ Neural Reconstruction in the Wild, SIGGRAPH 2022.




Large-scale scene reconstruction

@ Neural Reconstruction in the Wild, SIGGRAPH 2022.




I Indoor scene reconstruction

Challenge: texture-low regions




Indoor scene reconstruction

Manhattan-world assumption

Can be easily integrated when optimizing
implicit neural representations

~» color ¢(x) ———>
>

rendering

input image

<«—scene parameters
{nw, nf}

semantic segmentation input semantic segmentation

—» signed distance

» -
d(x) /
sl rendering |—>>
\9» semantic logits —>»

s(x)

@ Neural 3D Scene Reconstruction with the Manhattan-world Assumption, CVPR 2022. I
50



I Indoor scene reconstruction

'S

COLMAP VoISDF

Neural 3D Scene Reconstruction with the Manhattan-world Assumption, CVPR 2022.
Volume Rendering of Neural Implicit Surfaces, NeurlPS 2021.




I Neural dynamic scene representations

NeRF cannot model dynamic scenes

Third-Person View of Capture

Input Video

@ Nerfies: Deformable neural radiance fields, ICCV 2021.
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I Neural dynamic scene representations

Problem: scene movements cause the rays of different frames
of the same observed point do not intersect

53



General dynamic scenes — Deformable NeRF

Deformable NeRF: a canonical NeRF + deformation fields

Observation Canonical
Frame 1 Frame

@ Nerfies: Deformable neural radiance fields, ICCV 2021.
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General dynamic scenes — Deformable NeRF

The deformation field from other frames to canonical frame is
learned by another MLP

Observation Canonical
Frame 1 @ NeRF

Observation Code

Nerfies: Deformable neural radiance fields, ICCV 2021.
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I General dynamic scenes — Deformable NeRF

@ Nerfies: Deformable neural radiance fields, ICCV 2021.




General dynamic scenes — NSFF

Input video

Fixed Time, View Interpolation Fixed View, Time Interpolation

@ NSFF: Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes, CVPR 2021
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General dynamic scenes — NSFF

oy WS R RS SA W
M s mornt S FONR,

-/“P-'

3D scene flow visualization

@ NSFF: Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes, CVPR 2021 I
58



General dynamic scenes

Advantages:

« Can model general objects and scenes, not restricted to human

Limitations:

* Need to optimize canonical NeRF and motion field simultaneously,
which is prone to local optima

* Itis very hard to recover large and long-range motion, e.g. fast moving
human bodies

59



I Dynamic humans — Neural body

Reconstructing dynamic human from sparse views

View |

View 2

Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic
Humans, CVPR 2021. 60



Dynamic humans — Neural body

Reconstruction from sparse views is ill-posed

7

e

4 input views NeRF reconstruction
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Dynamic humans — Neural body

Integrating observations from multiple frames

4 input views

‘v
N ——
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s
]
——
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Our reconstruction
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Dynamic humans — Neural body

Assume NeRFs at different frames are decoded from the same
set of latent codes, whose locations are pose dependent

o -

Structured latent codes

@ Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic
Humans, CVPR 2021. 63



Dynamic humans — Neural body

The latent codes are decoded into NeRF by sparse convolution

.
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@ Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic
Humans, CVPR 2021. 64



I Dynamic humans — Neural body

Input 4-view video Neural Volumes "] NeRF [ Neural Body

[1] Neural volumes: Learning dynamic renderable volumes from images, SIGGRAPH 2019.

[2] Nerf: Representing scenes as neural radiance fields for view synthesis, ECCV 2020.
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I Dynamic humans — Animatable NeRF

Neural Body cannot synthesize images of novel human poses as
the 3D convolution is not equivariant to pose changes
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I Dynamic humans — Animatable NeRF

Key idea: deform NeRF with the linear blend scheme

human skeleton G

v
X > III —> w;(x)—> (Z,I::lw(x)kGo_lx

MLP T

observation space canonical space

@ Animatable neural radiance fields for human body modeling, ICCV 2021.




I Dynamic humans — Animatable NeRF

Key idea: deform NeRF with the linear blend scheme

@ Animatable neural radiance fields for human body modeling, ICCV 2021.




I Dynamic humans — Animatable NeRF

69



I Dynamic humans — Animatable NeRF

Replace NeRF with Neural SDF (NeuS)

Animatable
NeuS

@ Animatable Implicit Neural Representations for Creating Realistic Avatars from Videos, arXiv 2022.




I Dynamic humans — Animatable NeRF

Monocular video = detailed surface

@ Animatable Implicit Neural Representations for Creating Realistic Avatars from Videos, arXiv 2022. I
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Thanks !



