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Overview

Image-based modeling and rendering

Traditional methods and their limitations

Implicit Neural Representations

• Neural Radiance Fields (NeRF)

• Neural SDF for surface reconstruction

• Neural dynamic scene representations
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Why it works?

If projection is on the edge:

�1 = �2 ) orthogonality;

If �Y is small:

�1 = �2 = 0 ) sparsity.

V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky.

The convex geometry of linear inverse problems.

Foundations of Computational Mathematics, 12(6):805–849, 2012.

Xiaowei Zhou et al. (UPenn) 3D Shape Etimation

Image-based modeling and rendering
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Nerf in the wild: Neural radiance fields for unconstrained photo collections. CVPR. 2021.

3D model Novel viewsInput images



Applications
VR tour
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Matterport Google Immersive View



Applications
Bullet time effect
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Bullet time effect in "The Matrix"



Applications
Free-viewpoint video
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Intel TrueView 湖南卫视舞蹈风暴



Applications
Immersive telepresence
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Google Project Starline



Applications
Embodied AI: training agents in simulated environments
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Block NeRF iGibson

Autonomous driving Robots



Image-based modeling and rendering
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Input views

3D
Representation

Reconstruction

Output views

…Image credit: Noah Snavely
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Traditional methods
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A Review of Image-based Rendering Techniques, Visual Communications and Image Processing 2000.



Surface-based representations
3D mesh with texture map
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Surface-based representations
Mesh reconstruction pipeline
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SfM MVS Fusion Mesh extraction
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Surface-based representations
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High-Quality Streamable Free-Viewpoint Video, SIGGRAPH 2015.
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Surface-based representations
Capture system
53 RGB cameras and 53 IR cameras
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High-Quality Streamable Free-Viewpoint Video, SIGGRAPH 2015.



Surface-based representations
Limitations:
• High-quality mesh reconstruction is difficult in many cases
• Cannot represent very complex scenes
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Volume-based representations

Multi-Plane Image (MPI)

A set of front-parallel planes at a fixed range of depths

Each plane encodes an RGB color image 𝐶! and an alpha/transparency map 𝛼!
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Volume-based representations

Multi-Plane Image (MPI)
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DeepView: View synthesis with learned gradient descent. CVPR, 2019.
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Volume-based representations
RGB-𝜶 volume
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Neural Volumes: Learning Dynamic Renderable Volumes from Images, SIGGRAPH 2019.
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Volume-based representations
Neural volumes: an encoder-decoder network that transforms input 
images into a 3D volume representation
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Neural Volumes: Learning Dynamic Renderable Volumes from Images, SIGGRAPH 2019.
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Volume-based representations
Neural volumes: an encoder-decoder network that transforms 
input images into a 3D volume representation
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Neural Volumes: Learning Dynamic Renderable Volumes from Images, SIGGRAPH 2019.



Volume-based representations
Advantages: 
• Can represent very complex scenes
• Realistic reflections / specularity / transparency

Limitations: 
• Discrete 3D volume requires large storage size for high-resolution 

rendering
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Implicit Representations

22
Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019. 

�D Representations

I Traditional Explicit Representations ) Discrete
I Implicit Neural Representation ) Continuous

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning �D Reconstruction in Function Space. CVPR, ����. �

Volume Point cloud Mesh Implicit function

Explicit & discrete Implicit & continous



Implicit Representations
The implicit function can be:

23

Signed distance function (SDF)Occpupacy



Implicit Neural Representations
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MLP

3D coordinates
Occupancy

Signed Distance 
…

Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019. 

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019.
Learning implicit fields for generative shape modeling, CVPR 2019.

Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations, NeurIPS 2019.
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Neural Radiance Fields (NeRF) 
Representing scenes as continuous density and color fields
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NeRF: Representing scenes as neural radiance fields for view synthesis, ECCV 2020.
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Neural Radiance Fields (NeRF) 
Representing scenes as continuous density and color fields
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Neural Volumes: Learning Dynamic Renderable Volumes from Images, SIGGRAPH 2019.
NeRF: Representing scenes as neural radiance fields for view synthesis, ECCV 2020.

Discrete RGB-𝜶 volume Continuous RGB-𝜶 field
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Neural Radiance Fields (NeRF) 
Volume rendering, which is differentiable
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Neural Radiance Fields (NeRF) 
Learning NeRF from images
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NeRF: Representing scenes as neural radiance fields for view synthesis, ECCV 2020.

Input multi-view images Optimizing NeRF
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Neural Radiance Fields (NeRF) 
Positional encoding: 
• Standard coordinate-based MLPs perform poorly at representing high frequency details 
• Passing input coordinates through a high frequency mapping

30
NeRF: Representing scenes as neural radiance fields for view synthesis, ECCV 2020.
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Ground Truth Complete Model No View Dependence No Positional Encoding

Fig. 4: Here we visualize how our full model benefits from representing view-
dependent emitted radiance and from passing our input coordinates through
a high-frequency positional encoding. Removing view dependence prevents the
model from recreating the specular reflection on the bulldozer tread. Removing
the positional encoding drastically decreases the model’s ability to represent high
frequency geometry and texture, resulting in an oversmoothed appearance.

5 Optimizing a Neural Radiance Field

In the previous section we have described the core components necessary for
modeling a scene as a neural radiance field and rendering novel views from this
representation. However, we observe that these components are not su�cient for
achieving state-of-the-art quality, as demonstrated in Section 6.4). We introduce
two improvements to enable representing high-resolution complex scenes. The
first is a positional encoding of the input coordinates that assists the MLP in
representing high-frequency functions, and the second is a hierarchical sampling
procedure that allows us to e�ciently sample this high-frequency representation.

5.1 Positional encoding

Despite the fact that neural networks are universal function approximators [9],
we found that having the network F⇥ directly operate on xyz✓� input coordi-
nates results in renderings that perform poorly at representing high-frequency
variation in color and geometry. This is consistent with recent work by Rahaman
et al. [26], which shows that deep networks are biased towards learning lower fre-
quency functions. They additionally show that mapping the inputs to a higher
dimensional space using high frequency functions before passing them to the
network enables better fitting of data that contains high frequency variation.

We leverage these findings in the context of neural scene representations, and
show that reformulating F⇥ as a composition of two functions F⇥ = F 0

⇥ � �, one
learned and one not, significantly improves performance (see Fig. 4 and Table 2).
Here � is a mapping from R into a higher dimensional space R2L, and F 0

⇥ is still
simply a regular MLP. Formally, the encoding function we use is:

�(p) =
�
sin

�
20⇡p

�
, cos

�
20⇡p

�
, · · · , sin

�
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�
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This function �(·) is applied separately to each of the three coordinate values
in x (which are normalized to lie in [�1, 1]) and to the three components of the
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Neural Radiance Fields (NeRF) 
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NeRF: Representing scenes as neural radiance fields for view synthesis, ECCV 2020.



Neural Radiance Fields (NeRF) 
Why better?
• The representation is continuous and flexible
• Optimizing rendering quality end-to-end
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Neural Radiance Fields (NeRF) 
Limitations:
• Computationally inefficient in terms of training and inference

Optimizing a MLP network needs about 1 day
Render one novel view needs 30 seconds

• Cannot model dynamic scenes
• Poor surface reconstruction quality

33



Neural Radiance Fields (NeRF) 
Limitations
• Computationally inefficient in terms of training and inference
• Cannot model dynamic scenes
• Poor surface reconstruction quality
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Neural Radiance Fields (NeRF) 
Limitations
• Computationally inefficient in terms of training and inference
• Cannot model the motion of dynamic scenes
• Poor surface reconstruction quality

35
COLMAP NeRFReference image



Neural SDFs for Surface Reconstruction
Surface reconstruction vs. Volumetric reconstruction

36
Signed distance RGB + density

𝑥, 𝑦, 𝑧 𝑥, 𝑦, 𝑧
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Neural SDFs for Surface Reconstruction
Differentiable surface rendering

37
[1] Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision, CVPR 2020.
[2] Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance, NeurIPS 2020.

DVR[1] IDR[2]
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Limitation of surface rendering

38
NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction, NeurIPS 2021.

Surface
rendering, 
such as IDR

Volume
rendering, 

such as NeRF

Reference image
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NeuS

39
NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction, NeurIPS 2021.

Surface representation

Surface rendering

Volume representation

Volume rendering

Surface representation

Volume rendering
+ + +
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NeuS
Optimizing SDF in a volumetric rendering framework
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NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction, NeurIPS 2021.
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NeuS
Advantages:
• Accurate 3D implicit surface reconstruction
• No need for depth or mask supervision

43
NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction, NeurIPS 2021.

Reference image IDR NeRF NeuS
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NeuS
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NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction, NeurIPS 2021.



Large-scale scene reconstruction
Challenge: large-scale scene with thousands of images

45

Sphere-based sampling

near

far
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Large-scale scene reconstruction
Improving sampling efficiency by surface-guided sampling

46
Neural Reconstruction in the Wild, SIGGRAPH 2022.

Sphere-based sampling

near

far

near

near

far farsurface
position

Hybrid sampling
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Large-scale scene reconstruction

47
Neural Reconstruction in the Wild, SIGGRAPH 2022.

Credits: Flickr
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Large-scale scene reconstruction
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Neural Reconstruction in the Wild, SIGGRAPH 2022.

Credits: Flickr



Indoor scene reconstruction
Challenge: texture-low regions

49
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Indoor scene reconstruction
Manhattan-world assumption
Can be easily integrated when optimizing 
implicit neural representations

50
Neural 3D Scene Reconstruction with the Manhattan-world Assumption, CVPR 2022.
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Indoor scene reconstruction
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Neural 3D Scene Reconstruction with the Manhattan-world Assumption, CVPR 2022.
Volume Rendering of Neural Implicit Surfaces, NeurIPS 2021.

COLMAP VolSDF

Ours GT
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Neural dynamic scene representations
NeRF cannot model dynamic scenes

52
Nerfies: Deformable neural radiance fields, ICCV 2021.



Neural dynamic scene representations
Problem: scene movements cause the rays of different frames 
of the same observed point do not intersect

53
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General dynamic scenes – Deformable NeRF

54
Nerfies: Deformable neural radiance fields, ICCV 2021.

Deformable NeRF: a canonical NeRF + deformation fields
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General dynamic scenes – Deformable NeRF

55
Nerfies: Deformable neural radiance fields, ICCV 2021.

The deformation field from other frames to canonical frame is 
learned by another MLP 
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General dynamic scenes – Deformable NeRF
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Nerfies: Deformable neural radiance fields, ICCV 2021.
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3D scene flow visualization



General dynamic scenes
Advantages:
• Can model general objects and scenes, not restricted to human

Limitations:
• Need to optimize canonical NeRF and motion field simultaneously, 

which is prone to local optima
• It is very hard to recover large and long-range motion, e.g. fast moving 

human bodies
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Dynamic humans – Neural body
Reconstructing dynamic human from sparse views
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Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic 
Humans, CVPR 2021.

View 1

View 2

View 3



Dynamic humans – Neural body
Reconstruction from sparse views is ill-posed

4 input views NeRF reconstruction
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Dynamic humans – Neural body
Integrating observations from multiple frames
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4 input views Our reconstruction
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Dynamic humans – Neural body
Assume NeRFs at different frames are decoded from the same 
set of latent codes, whose locations are pose dependent  

Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic 
Humans, CVPR 2021. 63
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Dynamic humans – Neural body
The latent codes are decoded into NeRF by sparse convolution

Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic 
Humans, CVPR 2021. 64
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Dynamic humans – Neural body

[1] Neural volumes: Learning dynamic renderable volumes from images, SIGGRAPH 2019.
[2] Nerf: Representing scenes as neural radiance fields for view synthesis, ECCV 2020.

Input 4-view video NeRF [2]Neural Volumes [1] Neural Body
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Dynamic humans – Animatable NeRF

Neural Body cannot synthesize images of novel human poses as 
the 3D convolution is not equivariant to pose changes
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Dynamic humans – Animatable NeRF
Key idea: deform NeRF with the linear blend scheme
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Animatable neural radiance fields for human body modeling, ICCV 2021.
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Dynamic humans – Animatable NeRF
Key idea: deform NeRF with the linear blend scheme

68
Animatable neural radiance fields for human body modeling, ICCV 2021.



Dynamic humans – Animatable NeRF
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Dynamic humans – Animatable NeRF
Replace NeRF with Neural SDF (NeuS)
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Animatable Implicit Neural Representations for Creating Realistic Avatars from Videos, arXiv 2022.

Animatable 
NeRF

Animatable 
NeuS
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Dynamic humans – Animatable NeRF

Monocular video⟹ detailed surface
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Animatable Implicit Neural Representations for Creating Realistic Avatars from Videos, arXiv 2022.
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